| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqgvscpbl.v |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
eqgvscpbl.e |
⊢ ∼ = ( 𝑀 ~QG 𝐺 ) |
| 3 |
|
eqgvscpbl.s |
⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 4 |
|
eqgvscpbl.p |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
| 5 |
|
eqgvscpbl.m |
⊢ ( 𝜑 → 𝑀 ∈ LMod ) |
| 6 |
|
eqgvscpbl.g |
⊢ ( 𝜑 → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) |
| 7 |
|
eqgvscpbl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑆 ) |
| 8 |
|
qusvsval.n |
⊢ 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) |
| 9 |
|
qusvsval.m |
⊢ ∙ = ( ·𝑠 ‘ 𝑁 ) |
| 10 |
|
qusvsval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 |
8
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) ) |
| 12 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑀 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) |
| 14 |
|
ovex |
⊢ ( 𝑀 ~QG 𝐺 ) ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ~QG 𝐺 ) ∈ V ) |
| 16 |
11 12 13 15 5
|
qusval |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) “s 𝑀 ) ) |
| 17 |
11 12 13 15 5
|
quslem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) : 𝐵 –onto→ ( 𝐵 / ( 𝑀 ~QG 𝐺 ) ) ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑀 ∈ LMod ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) |
| 21 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑘 ∈ 𝑆 ) |
| 22 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) |
| 23 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) |
| 24 |
1 2 3 4 19 20 21 8 9 13 22 23
|
qusvscpbl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑣 ) → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑢 ) ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑣 ) ) ) ) |
| 25 |
16 12 17 5 18 3 4 9 24
|
imasvscaval |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐾 ∙ ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) ) |
| 26 |
7 10 25
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝐾 ∙ ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) ) |
| 27 |
|
eceq1 |
⊢ ( 𝑥 = 𝑋 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) |
| 28 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
| 29 |
14 28
|
ax-mp |
⊢ [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V |
| 30 |
27 13 29
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) |
| 31 |
10 30
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝜑 → ( 𝐾 ∙ ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( 𝐾 ∙ [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) ) |
| 33 |
1 18 4 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐾 · 𝑋 ) ∈ 𝐵 ) |
| 34 |
5 7 10 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 · 𝑋 ) ∈ 𝐵 ) |
| 35 |
|
eceq1 |
⊢ ( 𝑥 = ( 𝐾 · 𝑋 ) → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ) |
| 36 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
| 37 |
14 36
|
ax-mp |
⊢ [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V |
| 38 |
35 13 37
|
fvmpt |
⊢ ( ( 𝐾 · 𝑋 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ) |
| 39 |
34 38
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ) |
| 40 |
26 32 39
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐾 ∙ [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ) |