| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqgvscpbl.v |
|- B = ( Base ` M ) |
| 2 |
|
eqgvscpbl.e |
|- .~ = ( M ~QG G ) |
| 3 |
|
eqgvscpbl.s |
|- S = ( Base ` ( Scalar ` M ) ) |
| 4 |
|
eqgvscpbl.p |
|- .x. = ( .s ` M ) |
| 5 |
|
eqgvscpbl.m |
|- ( ph -> M e. LMod ) |
| 6 |
|
eqgvscpbl.g |
|- ( ph -> G e. ( LSubSp ` M ) ) |
| 7 |
|
eqgvscpbl.k |
|- ( ph -> K e. S ) |
| 8 |
|
qusvsval.n |
|- N = ( M /s ( M ~QG G ) ) |
| 9 |
|
qusvsval.m |
|- .xb = ( .s ` N ) |
| 10 |
|
qusvsval.x |
|- ( ph -> X e. B ) |
| 11 |
8
|
a1i |
|- ( ph -> N = ( M /s ( M ~QG G ) ) ) |
| 12 |
1
|
a1i |
|- ( ph -> B = ( Base ` M ) ) |
| 13 |
|
eqid |
|- ( x e. B |-> [ x ] ( M ~QG G ) ) = ( x e. B |-> [ x ] ( M ~QG G ) ) |
| 14 |
|
ovex |
|- ( M ~QG G ) e. _V |
| 15 |
14
|
a1i |
|- ( ph -> ( M ~QG G ) e. _V ) |
| 16 |
11 12 13 15 5
|
qusval |
|- ( ph -> N = ( ( x e. B |-> [ x ] ( M ~QG G ) ) "s M ) ) |
| 17 |
11 12 13 15 5
|
quslem |
|- ( ph -> ( x e. B |-> [ x ] ( M ~QG G ) ) : B -onto-> ( B /. ( M ~QG G ) ) ) |
| 18 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 19 |
5
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> M e. LMod ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> G e. ( LSubSp ` M ) ) |
| 21 |
|
simpr1 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> k e. S ) |
| 22 |
|
simpr2 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> u e. B ) |
| 23 |
|
simpr3 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> v e. B ) |
| 24 |
1 2 3 4 19 20 21 8 9 13 22 23
|
qusvscpbl |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> ( ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` u ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` v ) -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. u ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. v ) ) ) ) |
| 25 |
16 12 17 5 18 3 4 9 24
|
imasvscaval |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) ) |
| 26 |
7 10 25
|
mpd3an23 |
|- ( ph -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) ) |
| 27 |
|
eceq1 |
|- ( x = X -> [ x ] ( M ~QG G ) = [ X ] ( M ~QG G ) ) |
| 28 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ X ] ( M ~QG G ) e. _V ) |
| 29 |
14 28
|
ax-mp |
|- [ X ] ( M ~QG G ) e. _V |
| 30 |
27 13 29
|
fvmpt |
|- ( X e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
| 31 |
10 30
|
syl |
|- ( ph -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
| 32 |
31
|
oveq2d |
|- ( ph -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( K .xb [ X ] ( M ~QG G ) ) ) |
| 33 |
1 18 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ X e. B ) -> ( K .x. X ) e. B ) |
| 34 |
5 7 10 33
|
syl3anc |
|- ( ph -> ( K .x. X ) e. B ) |
| 35 |
|
eceq1 |
|- ( x = ( K .x. X ) -> [ x ] ( M ~QG G ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
| 36 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. X ) ] ( M ~QG G ) e. _V ) |
| 37 |
14 36
|
ax-mp |
|- [ ( K .x. X ) ] ( M ~QG G ) e. _V |
| 38 |
35 13 37
|
fvmpt |
|- ( ( K .x. X ) e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
| 39 |
34 38
|
syl |
|- ( ph -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
| 40 |
26 32 39
|
3eqtr3d |
|- ( ph -> ( K .xb [ X ] ( M ~QG G ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |