| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcndif0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 3 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → 𝐵 ≠ 0 ) |
| 7 |
|
animorr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( 𝐵 < 1 ∨ 1 < 𝐵 ) ) |
| 8 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
| 9 |
|
1red |
⊢ ( 1 < 𝐵 → 1 ∈ ℝ ) |
| 10 |
|
lttri2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐵 ≠ 1 ↔ ( 𝐵 < 1 ∨ 1 < 𝐵 ) ) ) |
| 11 |
8 9 10
|
syl2an |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( 𝐵 ≠ 1 ↔ ( 𝐵 < 1 ∨ 1 < 𝐵 ) ) ) |
| 12 |
7 11
|
mpbird |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → 𝐵 ≠ 1 ) |
| 13 |
4 6 12
|
3jca |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 14 |
|
logbmpt |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( curry logb ‘ 𝐵 ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ) ) |
| 16 |
15
|
dmeqd |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → dom ( curry logb ‘ 𝐵 ) = dom ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ) ) |
| 17 |
|
ovexd |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ∈ V ) |
| 18 |
17
|
ralrimiva |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ∈ V ) |
| 19 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ∈ V → dom ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ) = ( ℂ ∖ { 0 } ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → dom ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝐵 ) ) ) = ( ℂ ∖ { 0 } ) ) |
| 21 |
16 20
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → dom ( curry logb ‘ 𝐵 ) = ( ℂ ∖ { 0 } ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → dom ( curry logb ‘ 𝐵 ) = ( ℂ ∖ { 0 } ) ) |
| 23 |
2 22
|
eleqtrrd |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ dom ( curry logb ‘ 𝐵 ) ) |
| 24 |
|
logbfval |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝐵 logb 𝑥 ) ) |
| 25 |
13 1 24
|
syl2an |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) = ( 𝐵 logb 𝑥 ) ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 28 |
12
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ≠ 1 ) |
| 29 |
26 27 28
|
3jca |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
| 30 |
|
relogbcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑥 ) ∈ ℝ ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 logb 𝑥 ) ∈ ℝ ) |
| 32 |
25 31
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ) |
| 33 |
23 32
|
jca |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ dom ( curry logb ‘ 𝐵 ) ∧ ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ) ) |
| 34 |
33
|
ralrimiva |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom ( curry logb ‘ 𝐵 ) ∧ ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ) ) |
| 35 |
|
logbf |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 36 |
|
ffun |
⊢ ( ( curry logb ‘ 𝐵 ) : ( ℂ ∖ { 0 } ) ⟶ ℂ → Fun ( curry logb ‘ 𝐵 ) ) |
| 37 |
|
ffvresb |
⊢ ( Fun ( curry logb ‘ 𝐵 ) → ( ( ( curry logb ‘ 𝐵 ) ↾ ℝ+ ) : ℝ+ ⟶ ℝ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom ( curry logb ‘ 𝐵 ) ∧ ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ) ) ) |
| 38 |
13 35 36 37
|
4syl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( ( ( curry logb ‘ 𝐵 ) ↾ ℝ+ ) : ℝ+ ⟶ ℝ ↔ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ∈ dom ( curry logb ‘ 𝐵 ) ∧ ( ( curry logb ‘ 𝐵 ) ‘ 𝑥 ) ∈ ℝ ) ) ) |
| 39 |
34 38
|
mpbird |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) → ( ( curry logb ‘ 𝐵 ) ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |