Step |
Hyp |
Ref |
Expression |
1 |
|
ressval3d.r |
⊢ 𝑅 = ( 𝑆 ↾s 𝐴 ) |
2 |
|
ressval3d.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
ressval3d.e |
⊢ 𝐸 = ( Base ‘ ndx ) |
4 |
|
ressval3d.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
5 |
|
ressval3d.f |
⊢ ( 𝜑 → Fun 𝑆 ) |
6 |
|
ressval3d.d |
⊢ ( 𝜑 → 𝐸 ∈ dom 𝑆 ) |
7 |
|
ressval3d.u |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
8 |
|
sspss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
9 |
|
dfpss3 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) |
10 |
9
|
orbi1i |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
11 |
8 10
|
bitri |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → ¬ 𝐵 ⊆ 𝐴 ) |
13 |
4
|
adantl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑆 ∈ 𝑉 ) |
14 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
15 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
17 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) |
18 |
14 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐴 ∈ V ) |
19 |
1 2
|
ressval2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V ) → 𝑅 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
20 |
12 13 18 19
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
21 |
3
|
a1i |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐸 = ( Base ‘ ndx ) ) |
22 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
23 |
22
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
24 |
23
|
eqcomd |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
27 |
21 26
|
opeq12d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 〈 𝐸 , 𝐴 〉 = 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) |
28 |
27
|
eqcomd |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 = 〈 𝐸 , 𝐴 〉 ) |
29 |
28
|
oveq2d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
30 |
20 29
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
31 |
30
|
ex |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
32 |
1
|
a1i |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = ( 𝑆 ↾s 𝐴 ) ) |
33 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑆 ↾s 𝐴 ) = ( 𝑆 ↾s 𝐵 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 ↾s 𝐴 ) = ( 𝑆 ↾s 𝐵 ) ) |
35 |
4
|
adantl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑆 ∈ 𝑉 ) |
36 |
2
|
ressid |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
37 |
35 36
|
syl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
38 |
32 34 37
|
3eqtrd |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = 𝑆 ) |
39 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
40 |
3 6
|
eqeltrrid |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) |
41 |
39 4 5 40
|
setsidvald |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑆 = ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) ) |
43 |
3
|
a1i |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐸 = ( Base ‘ ndx ) ) |
44 |
|
simpl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐴 = 𝐵 ) |
45 |
44 2
|
eqtrdi |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
46 |
43 45
|
opeq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 〈 𝐸 , 𝐴 〉 = 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 = 〈 𝐸 , 𝐴 〉 ) |
48 |
47
|
oveq2d |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → ( 𝑆 sSet 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 ) = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
49 |
38 42 48
|
3eqtrd |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |
50 |
49
|
ex |
⊢ ( 𝐴 = 𝐵 → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
51 |
31 50
|
jaoi |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ∨ 𝐴 = 𝐵 ) → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
52 |
11 51
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) ) |
53 |
7 52
|
mpcom |
⊢ ( 𝜑 → 𝑅 = ( 𝑆 sSet 〈 𝐸 , 𝐴 〉 ) ) |