Metamath Proof Explorer


Theorem ressval3d

Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020) (Revised by AV, 3-Jul-2022) (Proof shortened by AV, 17-Oct-2024)

Ref Expression
Hypotheses ressval3d.r R = S 𝑠 A
ressval3d.b B = Base S
ressval3d.e E = Base ndx
ressval3d.s φ S V
ressval3d.f φ Fun S
ressval3d.d φ E dom S
ressval3d.u φ A B
Assertion ressval3d φ R = S sSet E A

Proof

Step Hyp Ref Expression
1 ressval3d.r R = S 𝑠 A
2 ressval3d.b B = Base S
3 ressval3d.e E = Base ndx
4 ressval3d.s φ S V
5 ressval3d.f φ Fun S
6 ressval3d.d φ E dom S
7 ressval3d.u φ A B
8 sspss A B A B A = B
9 dfpss3 A B A B ¬ B A
10 9 orbi1i A B A = B A B ¬ B A A = B
11 8 10 bitri A B A B ¬ B A A = B
12 simplr A B ¬ B A φ ¬ B A
13 4 adantl A B ¬ B A φ S V
14 simpl A B ¬ B A A B
15 2 fvexi B V
16 15 a1i φ B V
17 ssexg A B B V A V
18 14 16 17 syl2an A B ¬ B A φ A V
19 1 2 ressval2 ¬ B A S V A V R = S sSet Base ndx A B
20 12 13 18 19 syl3anc A B ¬ B A φ R = S sSet Base ndx A B
21 3 a1i A B ¬ B A φ E = Base ndx
22 df-ss A B A B = A
23 22 biimpi A B A B = A
24 23 eqcomd A B A = A B
25 24 adantr A B ¬ B A A = A B
26 25 adantr A B ¬ B A φ A = A B
27 21 26 opeq12d A B ¬ B A φ E A = Base ndx A B
28 27 eqcomd A B ¬ B A φ Base ndx A B = E A
29 28 oveq2d A B ¬ B A φ S sSet Base ndx A B = S sSet E A
30 20 29 eqtrd A B ¬ B A φ R = S sSet E A
31 30 ex A B ¬ B A φ R = S sSet E A
32 1 a1i A = B φ R = S 𝑠 A
33 oveq2 A = B S 𝑠 A = S 𝑠 B
34 33 adantr A = B φ S 𝑠 A = S 𝑠 B
35 4 adantl A = B φ S V
36 2 ressid S V S 𝑠 B = S
37 35 36 syl A = B φ S 𝑠 B = S
38 32 34 37 3eqtrd A = B φ R = S
39 baseid Base = Slot Base ndx
40 3 6 eqeltrrid φ Base ndx dom S
41 39 4 5 40 setsidvald φ S = S sSet Base ndx Base S
42 41 adantl A = B φ S = S sSet Base ndx Base S
43 3 a1i A = B φ E = Base ndx
44 simpl A = B φ A = B
45 44 2 eqtrdi A = B φ A = Base S
46 43 45 opeq12d A = B φ E A = Base ndx Base S
47 46 eqcomd A = B φ Base ndx Base S = E A
48 47 oveq2d A = B φ S sSet Base ndx Base S = S sSet E A
49 38 42 48 3eqtrd A = B φ R = S sSet E A
50 49 ex A = B φ R = S sSet E A
51 31 50 jaoi A B ¬ B A A = B φ R = S sSet E A
52 11 51 sylbi A B φ R = S sSet E A
53 7 52 mpcom φ R = S sSet E A