Metamath Proof Explorer


Theorem ressval3d

Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses ressval3d.r
|- R = ( S |`s A )
ressval3d.b
|- B = ( Base ` S )
ressval3d.e
|- E = ( Base ` ndx )
ressval3d.s
|- ( ph -> S e. V )
ressval3d.f
|- ( ph -> Fun S )
ressval3d.d
|- ( ph -> E e. dom S )
ressval3d.u
|- ( ph -> A C_ B )
Assertion ressval3d
|- ( ph -> R = ( S sSet <. E , A >. ) )

Proof

Step Hyp Ref Expression
1 ressval3d.r
 |-  R = ( S |`s A )
2 ressval3d.b
 |-  B = ( Base ` S )
3 ressval3d.e
 |-  E = ( Base ` ndx )
4 ressval3d.s
 |-  ( ph -> S e. V )
5 ressval3d.f
 |-  ( ph -> Fun S )
6 ressval3d.d
 |-  ( ph -> E e. dom S )
7 ressval3d.u
 |-  ( ph -> A C_ B )
8 sspss
 |-  ( A C_ B <-> ( A C. B \/ A = B ) )
9 dfpss3
 |-  ( A C. B <-> ( A C_ B /\ -. B C_ A ) )
10 9 orbi1i
 |-  ( ( A C. B \/ A = B ) <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) )
11 8 10 bitri
 |-  ( A C_ B <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) )
12 simplr
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> -. B C_ A )
13 4 adantl
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> S e. V )
14 simpl
 |-  ( ( A C_ B /\ -. B C_ A ) -> A C_ B )
15 2 fvexi
 |-  B e. _V
16 15 a1i
 |-  ( ph -> B e. _V )
17 ssexg
 |-  ( ( A C_ B /\ B e. _V ) -> A e. _V )
18 14 16 17 syl2an
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A e. _V )
19 1 2 ressval2
 |-  ( ( -. B C_ A /\ S e. V /\ A e. _V ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )
20 12 13 18 19 syl3anc
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )
21 3 a1i
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> E = ( Base ` ndx ) )
22 df-ss
 |-  ( A C_ B <-> ( A i^i B ) = A )
23 22 biimpi
 |-  ( A C_ B -> ( A i^i B ) = A )
24 23 eqcomd
 |-  ( A C_ B -> A = ( A i^i B ) )
25 24 adantr
 |-  ( ( A C_ B /\ -. B C_ A ) -> A = ( A i^i B ) )
26 25 adantr
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A = ( A i^i B ) )
27 21 26 opeq12d
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( A i^i B ) >. )
28 27 eqcomd
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. ( Base ` ndx ) , ( A i^i B ) >. = <. E , A >. )
29 28 oveq2d
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) = ( S sSet <. E , A >. ) )
30 20 29 eqtrd
 |-  ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. E , A >. ) )
31 30 ex
 |-  ( ( A C_ B /\ -. B C_ A ) -> ( ph -> R = ( S sSet <. E , A >. ) ) )
32 1 a1i
 |-  ( ( A = B /\ ph ) -> R = ( S |`s A ) )
33 oveq2
 |-  ( A = B -> ( S |`s A ) = ( S |`s B ) )
34 33 adantr
 |-  ( ( A = B /\ ph ) -> ( S |`s A ) = ( S |`s B ) )
35 4 adantl
 |-  ( ( A = B /\ ph ) -> S e. V )
36 2 ressid
 |-  ( S e. V -> ( S |`s B ) = S )
37 35 36 syl
 |-  ( ( A = B /\ ph ) -> ( S |`s B ) = S )
38 32 34 37 3eqtrd
 |-  ( ( A = B /\ ph ) -> R = S )
39 df-base
 |-  Base = Slot 1
40 1nn
 |-  1 e. NN
41 3 6 eqeltrrid
 |-  ( ph -> ( Base ` ndx ) e. dom S )
42 39 40 4 5 41 setsidvald
 |-  ( ph -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) )
43 42 adantl
 |-  ( ( A = B /\ ph ) -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) )
44 3 a1i
 |-  ( ( A = B /\ ph ) -> E = ( Base ` ndx ) )
45 simpl
 |-  ( ( A = B /\ ph ) -> A = B )
46 45 2 eqtrdi
 |-  ( ( A = B /\ ph ) -> A = ( Base ` S ) )
47 44 46 opeq12d
 |-  ( ( A = B /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( Base ` S ) >. )
48 47 eqcomd
 |-  ( ( A = B /\ ph ) -> <. ( Base ` ndx ) , ( Base ` S ) >. = <. E , A >. )
49 48 oveq2d
 |-  ( ( A = B /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) = ( S sSet <. E , A >. ) )
50 38 43 49 3eqtrd
 |-  ( ( A = B /\ ph ) -> R = ( S sSet <. E , A >. ) )
51 50 ex
 |-  ( A = B -> ( ph -> R = ( S sSet <. E , A >. ) ) )
52 31 51 jaoi
 |-  ( ( ( A C_ B /\ -. B C_ A ) \/ A = B ) -> ( ph -> R = ( S sSet <. E , A >. ) ) )
53 11 52 sylbi
 |-  ( A C_ B -> ( ph -> R = ( S sSet <. E , A >. ) ) )
54 7 53 mpcom
 |-  ( ph -> R = ( S sSet <. E , A >. ) )