Step |
Hyp |
Ref |
Expression |
1 |
|
ringcsectALTV.c |
⊢ 𝐶 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
ringcsectALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
ringcsectALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
ringcsectALTV.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ringcsectALTV.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ringcinvALTV.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
7 |
1
|
ringccatALTV |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
9 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
10 |
2 6 8 4 5 9
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
12 |
1 2 3 4 5 11 9
|
ringcsectALTV |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
13 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
14 |
12 13
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
16 |
1 2 3 5 4 15 9
|
ringcsectALTV |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
17 |
|
3ancoma |
⊢ ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
18 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
19 |
17 18
|
bitri |
⊢ ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
20 |
16 19
|
bitrdi |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
21 |
14 20
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) ) |
22 |
|
anandi |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
23 |
21 22
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) ) |
24 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
26 |
11 15
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
27 |
15 11
|
rhmf |
⊢ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) |
28 |
26 27
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
34 |
31 33
|
jca |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
35 |
29 34
|
jca |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
37 |
|
fcof1o |
⊢ ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ ◡ 𝐹 = 𝐺 ) ) |
38 |
|
eqcom |
⊢ ( ◡ 𝐹 = 𝐺 ↔ 𝐺 = ◡ 𝐹 ) |
39 |
38
|
anbi2i |
⊢ ( ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ ◡ 𝐹 = 𝐺 ) ↔ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
40 |
37 39
|
sylib |
⊢ ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
41 |
36 40
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
42 |
|
anass |
⊢ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
43 |
25 41 42
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) |
44 |
4 5
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
45 |
11 15
|
isrim |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) ) |
47 |
46
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
49 |
43 48
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
50 |
11 15
|
rimrhm |
⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
51 |
50
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
52 |
|
isrim0 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
53 |
44 52
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
54 |
|
eleq1 |
⊢ ( ◡ 𝐹 = 𝐺 → ( ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
55 |
54
|
eqcoms |
⊢ ( 𝐺 = ◡ 𝐹 → ( ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
56 |
55
|
anbi2d |
⊢ ( 𝐺 = ◡ 𝐹 → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
57 |
53 56
|
sylan9bbr |
⊢ ( ( 𝐺 = ◡ 𝐹 ∧ 𝜑 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
58 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) |
59 |
57 58
|
syl6bi |
⊢ ( ( 𝐺 = ◡ 𝐹 ∧ 𝜑 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
60 |
59
|
com12 |
⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( ( 𝐺 = ◡ 𝐹 ∧ 𝜑 ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
61 |
60
|
expdimp |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) → ( 𝜑 → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
62 |
61
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) |
63 |
|
coeq1 |
⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) |
64 |
63
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) |
65 |
11 15
|
rimf1o |
⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
66 |
65
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
67 |
|
f1ococnv1 |
⊢ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
69 |
64 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
70 |
51 62 69
|
jca31 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
71 |
53
|
biimpcd |
⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) → ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
73 |
72
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
74 |
|
eleq1 |
⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
75 |
74
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
76 |
75
|
anbi2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
77 |
73 76
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
78 |
|
coeq2 |
⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
79 |
78
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
80 |
|
f1ococnv2 |
⊢ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
81 |
66 80
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
82 |
79 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
83 |
77 69 82
|
jca31 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
84 |
70 77 83
|
jca31 |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
85 |
49 84
|
impbida |
⊢ ( 𝜑 → ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
86 |
10 23 85
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |