Metamath Proof Explorer


Theorem ringcinvALTV

Description: An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcsectALTV.c 𝐶 = ( RingCatALTV ‘ 𝑈 )
ringcsectALTV.b 𝐵 = ( Base ‘ 𝐶 )
ringcsectALTV.u ( 𝜑𝑈𝑉 )
ringcsectALTV.x ( 𝜑𝑋𝐵 )
ringcsectALTV.y ( 𝜑𝑌𝐵 )
ringcinvALTV.n 𝑁 = ( Inv ‘ 𝐶 )
Assertion ringcinvALTV ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 ringcsectALTV.c 𝐶 = ( RingCatALTV ‘ 𝑈 )
2 ringcsectALTV.b 𝐵 = ( Base ‘ 𝐶 )
3 ringcsectALTV.u ( 𝜑𝑈𝑉 )
4 ringcsectALTV.x ( 𝜑𝑋𝐵 )
5 ringcsectALTV.y ( 𝜑𝑌𝐵 )
6 ringcinvALTV.n 𝑁 = ( Inv ‘ 𝐶 )
7 1 ringccatALTV ( 𝑈𝑉𝐶 ∈ Cat )
8 3 7 syl ( 𝜑𝐶 ∈ Cat )
9 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
10 2 6 8 4 5 9 isinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) )
11 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
12 1 2 3 4 5 11 9 ringcsectALTV ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) )
13 df-3an ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) )
14 12 13 bitrdi ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) )
15 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
16 1 2 3 5 4 15 9 ringcsectALTV ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) )
17 3ancoma ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) )
18 df-3an ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) )
19 17 18 bitri ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) )
20 16 19 bitrdi ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) )
21 14 20 anbi12d ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) )
22 anandi ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) )
23 21 22 bitrdi ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) )
24 simplrl ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) )
25 24 adantl ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) )
26 11 15 rhmf ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) )
27 15 11 rhmf ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) )
28 26 27 anim12i ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) )
29 28 ad2antlr ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) )
30 simpr ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) → ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) )
31 30 adantl ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) )
32 simpr ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) → ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) )
33 32 ad2antrl ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) )
34 31 33 jca ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) )
35 29 34 jca ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) )
36 35 adantl ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) )
37 fcof1o ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐹 = 𝐺 ) )
38 eqcom ( 𝐹 = 𝐺𝐺 = 𝐹 )
39 38 anbi2i ( ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐹 = 𝐺 ) ↔ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = 𝐹 ) )
40 37 39 sylib ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = 𝐹 ) )
41 36 40 syl ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = 𝐹 ) )
42 anass ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = 𝐹 ) ) )
43 25 41 42 sylanbrc ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = 𝐹 ) )
44 4 5 jca ( 𝜑 → ( 𝑋𝐵𝑌𝐵 ) )
45 11 15 isrim ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) )
46 44 45 syl ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) )
47 46 anbi1d ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = 𝐹 ) ) )
48 47 adantr ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = 𝐹 ) ) )
49 43 48 mpbird ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) )
50 11 15 rimrhm ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) )
51 50 ad2antrl ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) )
52 isrim0 ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
53 44 52 syl ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
54 eleq1 ( 𝐹 = 𝐺 → ( 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
55 54 eqcoms ( 𝐺 = 𝐹 → ( 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
56 55 anbi2d ( 𝐺 = 𝐹 → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
57 53 56 sylan9bbr ( ( 𝐺 = 𝐹𝜑 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
58 simpr ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) )
59 57 58 syl6bi ( ( 𝐺 = 𝐹𝜑 ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
60 59 com12 ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( ( 𝐺 = 𝐹𝜑 ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
61 60 expdimp ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) → ( 𝜑𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
62 61 impcom ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) )
63 coeq1 ( 𝐺 = 𝐹 → ( 𝐺𝐹 ) = ( 𝐹𝐹 ) )
64 63 ad2antll ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐺𝐹 ) = ( 𝐹𝐹 ) )
65 11 15 rimf1o ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) )
66 65 ad2antrl ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) )
67 f1ococnv1 ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝐹𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) )
68 66 67 syl ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) )
69 64 68 eqtrd ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) )
70 51 62 69 jca31 ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) )
71 53 biimpcd ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
72 71 adantr ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) → ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
73 72 impcom ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) )
74 eleq1 ( 𝐺 = 𝐹 → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) )
75 74 ad2antll ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) )
76 75 anbi2d ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) )
77 73 76 mpbird ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) )
78 coeq2 ( 𝐺 = 𝐹 → ( 𝐹𝐺 ) = ( 𝐹 𝐹 ) )
79 78 ad2antll ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹𝐺 ) = ( 𝐹 𝐹 ) )
80 f1ococnv2 ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝐹 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) )
81 66 80 syl ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) )
82 79 81 eqtrd ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) )
83 77 69 82 jca31 ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) )
84 70 77 83 jca31 ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) → ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) )
85 49 84 impbida ( 𝜑 → ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) )
86 10 23 85 3bitrd ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = 𝐹 ) ) )