Step |
Hyp |
Ref |
Expression |
1 |
|
riotaeqimp.i |
⊢ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) |
2 |
|
riotaeqimp.j |
⊢ 𝐽 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) |
3 |
|
riotaeqimp.x |
⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) |
4 |
|
riotaeqimp.y |
⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) |
5 |
2
|
eqcomi |
⊢ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐽 |
6 |
5
|
eqeq2i |
⊢ ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ↔ 𝐼 = 𝐽 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ↔ 𝐼 = 𝐽 ) ) |
8 |
7
|
bicomd |
⊢ ( 𝜑 → ( 𝐼 = 𝐽 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) |
10 |
1
|
eqeq1i |
⊢ ( 𝐼 = 𝐽 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ) |
11 |
|
riotacl |
⊢ ( ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 → ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ∈ 𝑉 ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ∈ 𝑉 ) |
13 |
2 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ 𝑉 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑎 𝐽 ∈ 𝑉 |
15 |
|
nfcvd |
⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝐽 ) |
16 |
|
nfcvd |
⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝑋 ) |
17 |
15
|
nfcsb1d |
⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
18 |
16 17
|
nfeqd |
⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
19 |
|
id |
⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ 𝑉 ) |
20 |
|
csbeq1a |
⊢ ( 𝑎 = 𝐽 → 𝐴 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑎 = 𝐽 → ( 𝑋 = 𝐴 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑎 = 𝐽 ) → ( 𝑋 = 𝐴 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
23 |
14 15 18 19 22
|
riota2df |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ) ) |
24 |
23
|
bicomd |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) → ( ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
25 |
13 3 24
|
syl2anc |
⊢ ( 𝜑 → ( ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
26 |
10 25
|
bitrid |
⊢ ( 𝜑 → ( 𝐼 = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
27 |
26
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
28 |
|
riotacl |
⊢ ( ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 → ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) ∈ 𝑉 ) |
29 |
3 28
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) ∈ 𝑉 ) |
30 |
1 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑎 𝐼 ∈ 𝑉 |
32 |
|
nfcvd |
⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝐼 ) |
33 |
|
nfcvd |
⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝑌 ) |
34 |
32
|
nfcsb1d |
⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
35 |
33 34
|
nfeqd |
⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
36 |
|
id |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) |
37 |
|
csbeq1a |
⊢ ( 𝑎 = 𝐼 → 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑎 = 𝐼 → ( 𝑌 = 𝐴 ↔ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑎 = 𝐼 ) → ( 𝑌 = 𝐴 ↔ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
40 |
31 32 35 36 39
|
riota2df |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ) ) |
41 |
30 4 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ) ) |
42 |
|
eqcom |
⊢ ( ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) |
43 |
41 42
|
bitrdi |
⊢ ( 𝜑 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
45 |
|
csbeq1 |
⊢ ( 𝐽 = 𝐼 → ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
46 |
45
|
eqcoms |
⊢ ( 𝐼 = 𝐽 → ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
47 |
|
eqeq12 |
⊢ ( ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ∧ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) → ( 𝑋 = 𝑌 ↔ ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
48 |
47
|
ancoms |
⊢ ( ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ∧ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) → ( 𝑋 = 𝑌 ↔ ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
49 |
46 48
|
syl5ibrcom |
⊢ ( 𝐼 = 𝐽 → ( ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ∧ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) → 𝑋 = 𝑌 ) ) |
50 |
49
|
expd |
⊢ ( 𝐼 = 𝐽 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
52 |
44 51
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
53 |
9 27 52
|
mp2d |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝑋 = 𝑌 ) |