Metamath Proof Explorer


Theorem sbthlem2

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
Assertion sbthlem2 ( ran 𝑔𝐴 → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐷 )

Proof

Step Hyp Ref Expression
1 sbthlem.1 𝐴 ∈ V
2 sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
3 1 2 sbthlem1 𝐷 ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) )
4 imass2 ( 𝐷 ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝑓 𝐷 ) ⊆ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) )
5 sscon ( ( 𝑓 𝐷 ) ⊆ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) → ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ⊆ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )
6 3 4 5 mp2b ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ⊆ ( 𝐵 ∖ ( 𝑓 𝐷 ) )
7 imass2 ( ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ⊆ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) )
8 sscon ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ) )
9 6 7 8 mp2b ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) )
10 imassrn ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ran 𝑔
11 sstr2 ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ran 𝑔 → ( ran 𝑔𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ 𝐴 ) )
12 10 11 ax-mp ( ran 𝑔𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ 𝐴 )
13 difss ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴
14 ssconb ( ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ 𝐴 ∧ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴 ) → ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ↔ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ) ) )
15 12 13 14 sylancl ( ran 𝑔𝐴 → ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ↔ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ) ) )
16 9 15 mpbiri ( ran 𝑔𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) )
17 16 13 jctil ( ran 𝑔𝐴 → ( ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) )
18 1 difexi ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ∈ V
19 sseq1 ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝑥𝐴 ↔ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴 ) )
20 imaeq2 ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝑓𝑥 ) = ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) )
21 20 difeq2d ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝐵 ∖ ( 𝑓𝑥 ) ) = ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) )
22 21 imaeq2d ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) = ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) )
23 difeq2 ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( 𝐴𝑥 ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) )
24 22 23 sseq12d ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ↔ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) )
25 19 24 anbi12d ( 𝑥 = ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) → ( ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) ↔ ( ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) )
26 18 25 elab ( ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ∈ { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) } ↔ ( ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) ) ⊆ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ) ) )
27 17 26 sylibr ( ran 𝑔𝐴 → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ∈ { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) } )
28 27 2 eleqtrrdi ( ran 𝑔𝐴 → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ∈ 𝐷 )
29 elssuni ( ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ∈ 𝐷 → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐷 )
30 28 29 syl ( ran 𝑔𝐴 → ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐷 )