| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
⊢ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ∈ V |
| 2 |
|
brssc |
⊢ ( ℎ ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝐽 Fn ( 𝑡 × 𝑡 ) ) |
| 4 |
|
vex |
⊢ 𝑡 ∈ V |
| 5 |
4 4
|
xpex |
⊢ ( 𝑡 × 𝑡 ) ∈ V |
| 6 |
|
fnex |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑡 × 𝑡 ) ∈ V ) → 𝐽 ∈ V ) |
| 7 |
3 5 6
|
sylancl |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝐽 ∈ V ) |
| 8 |
|
rnexg |
⊢ ( 𝐽 ∈ V → ran 𝐽 ∈ V ) |
| 9 |
|
uniexg |
⊢ ( ran 𝐽 ∈ V → ∪ ran 𝐽 ∈ V ) |
| 10 |
|
pwexg |
⊢ ( ∪ ran 𝐽 ∈ V → 𝒫 ∪ ran 𝐽 ∈ V ) |
| 11 |
7 8 9 10
|
4syl |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝒫 ∪ ran 𝐽 ∈ V ) |
| 12 |
|
fndm |
⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
| 14 |
13 5
|
eqeltrdi |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → dom 𝐽 ∈ V ) |
| 15 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ) |
| 16 |
|
fvssunirn |
⊢ ( 𝐽 ‘ 𝑥 ) ⊆ ∪ ran 𝐽 |
| 17 |
16
|
sspwi |
⊢ 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 |
| 18 |
17
|
a1i |
⊢ ( 𝑥 ∈ ( 𝑠 × 𝑠 ) → 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 ) |
| 19 |
15 18
|
mprg |
⊢ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 |
| 20 |
|
simprr |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) |
| 21 |
19 20
|
sselid |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ) |
| 22 |
|
vex |
⊢ ℎ ∈ V |
| 23 |
22
|
elixpconst |
⊢ ( ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ↔ ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ) |
| 24 |
21 23
|
sylib |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ) |
| 25 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑡 → 𝑠 ⊆ 𝑡 ) |
| 26 |
25
|
ad2antrl |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝑠 ⊆ 𝑡 ) |
| 27 |
|
xpss12 |
⊢ ( ( 𝑠 ⊆ 𝑡 ∧ 𝑠 ⊆ 𝑡 ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) ) |
| 28 |
26 26 27
|
syl2anc |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) ) |
| 29 |
28 13
|
sseqtrrd |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 ) |
| 30 |
|
elpm2r |
⊢ ( ( ( 𝒫 ∪ ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V ) ∧ ( ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ∧ ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 31 |
11 14 24 29 30
|
syl22anc |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 32 |
31
|
rexlimdvaa |
⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → ( ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 34 |
33
|
exlimiv |
⊢ ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 35 |
2 34
|
sylbi |
⊢ ( ℎ ⊆cat 𝐽 → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 36 |
35
|
abssi |
⊢ { ℎ ∣ ℎ ⊆cat 𝐽 } ⊆ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) |
| 37 |
1 36
|
ssexi |
⊢ { ℎ ∣ ℎ ⊆cat 𝐽 } ∈ V |