Metamath Proof Explorer


Theorem sscpwex

Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscpwex { cat 𝐽 } ∈ V

Proof

Step Hyp Ref Expression
1 ovex ( 𝒫 ran 𝐽pm dom 𝐽 ) ∈ V
2 brssc ( cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) )
3 simpl ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → 𝐽 Fn ( 𝑡 × 𝑡 ) )
4 vex 𝑡 ∈ V
5 4 4 xpex ( 𝑡 × 𝑡 ) ∈ V
6 fnex ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑡 × 𝑡 ) ∈ V ) → 𝐽 ∈ V )
7 3 5 6 sylancl ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → 𝐽 ∈ V )
8 rnexg ( 𝐽 ∈ V → ran 𝐽 ∈ V )
9 uniexg ( ran 𝐽 ∈ V → ran 𝐽 ∈ V )
10 pwexg ( ran 𝐽 ∈ V → 𝒫 ran 𝐽 ∈ V )
11 7 8 9 10 4syl ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → 𝒫 ran 𝐽 ∈ V )
12 fndm ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) )
13 12 adantr ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) )
14 13 5 eqeltrdi ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → dom 𝐽 ∈ V )
15 ss2ixp ( ∀ 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ⊆ 𝒫 ran 𝐽X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ran 𝐽 )
16 fvssunirn ( 𝐽𝑥 ) ⊆ ran 𝐽
17 16 sspwi 𝒫 ( 𝐽𝑥 ) ⊆ 𝒫 ran 𝐽
18 17 a1i ( 𝑥 ∈ ( 𝑠 × 𝑠 ) → 𝒫 ( 𝐽𝑥 ) ⊆ 𝒫 ran 𝐽 )
19 15 18 mprg X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ran 𝐽
20 simprr ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) )
21 19 20 sseldi ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ran 𝐽 )
22 vex ∈ V
23 22 elixpconst ( X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ran 𝐽 : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ran 𝐽 )
24 21 23 sylib ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ran 𝐽 )
25 elpwi ( 𝑠 ∈ 𝒫 𝑡𝑠𝑡 )
26 25 ad2antrl ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → 𝑠𝑡 )
27 xpss12 ( ( 𝑠𝑡𝑠𝑡 ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) )
28 26 26 27 syl2anc ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) )
29 28 13 sseqtrrd ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 )
30 elpm2r ( ( ( 𝒫 ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V ) ∧ ( : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ran 𝐽 ∧ ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 ) ) → ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) )
31 11 14 24 29 30 syl22anc ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) ) → ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) )
32 31 rexlimdvaa ( 𝐽 Fn ( 𝑡 × 𝑡 ) → ( ∃ 𝑠 ∈ 𝒫 𝑡 X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) → ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) ) )
33 32 imp ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) → ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) )
34 33 exlimiv ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽𝑥 ) ) → ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) )
35 2 34 sylbi ( cat 𝐽 ∈ ( 𝒫 ran 𝐽pm dom 𝐽 ) )
36 35 abssi { cat 𝐽 } ⊆ ( 𝒫 ran 𝐽pm dom 𝐽 )
37 1 36 ssexi { cat 𝐽 } ∈ V