| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | taylpfval.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | taylpfval.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 4 |  | taylpfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | taylpfval.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 6 |  | taylpfval.t | ⊢ 𝑇  =  ( 𝑁 ( 𝑆  Tayl  𝐹 ) 𝐵 ) | 
						
							| 7 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 8 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 9 | 8 | subrgid | ⊢ ( ℂfld  ∈  Ring  →  ℂ  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 10 | 7 9 | mp1i | ⊢ ( 𝜑  →  ℂ  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 11 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 13 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  𝑆 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 14 | 12 1 2 3 13 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 15 |  | dvnbss | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  𝐹 ) | 
						
							| 16 | 1 14 4 15 | syl3anc | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  𝐹 ) | 
						
							| 17 | 2 16 | fssdmd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  𝐴 ) | 
						
							| 18 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 20 | 3 19 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 21 | 17 20 | sstrd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  ℂ ) | 
						
							| 22 | 21 5 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 23 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 24 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 25 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 27 |  | dvnf | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 28 | 23 24 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 30 |  | dvn2bss | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 31 | 23 24 29 30 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ⊆  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 32 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 33 | 31 32 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 34 | 28 33 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 35 | 26 | faccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 36 | 35 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 37 | 35 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 38 | 34 36 37 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 39 | 1 2 3 4 5 6 10 22 38 | taylply2 | ⊢ ( 𝜑  →  ( 𝑇  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑇 )  ≤  𝑁 ) ) |