| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | taylpfval.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | taylpfval.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | taylpfval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | taylpfval.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 6 |  | taylpfval.t |  |-  T = ( N ( S Tayl F ) B ) | 
						
							| 7 |  | cnring |  |-  CCfld e. Ring | 
						
							| 8 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 9 | 8 | subrgid |  |-  ( CCfld e. Ring -> CC e. ( SubRing ` CCfld ) ) | 
						
							| 10 | 7 9 | mp1i |  |-  ( ph -> CC e. ( SubRing ` CCfld ) ) | 
						
							| 11 |  | cnex |  |-  CC e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 13 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 14 | 12 1 2 3 13 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 15 |  | dvnbss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom ( ( S Dn F ) ` N ) C_ dom F ) | 
						
							| 16 | 1 14 4 15 | syl3anc |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ dom F ) | 
						
							| 17 | 2 16 | fssdmd |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ A ) | 
						
							| 18 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 20 | 3 19 | sstrd |  |-  ( ph -> A C_ CC ) | 
						
							| 21 | 17 20 | sstrd |  |-  ( ph -> dom ( ( S Dn F ) ` N ) C_ CC ) | 
						
							| 22 | 21 5 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 23 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> S e. { RR , CC } ) | 
						
							| 24 | 14 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 25 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 27 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 28 | 23 24 26 27 | syl3anc |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... N ) ) | 
						
							| 30 |  | dvn2bss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) | 
						
							| 31 | 23 24 29 30 | syl3anc |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 33 | 31 32 | sseldd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 34 | 28 33 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) | 
						
							| 35 | 26 | faccld |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) | 
						
							| 36 | 35 | nncnd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. CC ) | 
						
							| 37 | 35 | nnne0d |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) =/= 0 ) | 
						
							| 38 | 34 36 37 | divcld |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 39 | 1 2 3 4 5 6 10 22 38 | taylply2 |  |-  ( ph -> ( T e. ( Poly ` CC ) /\ ( deg ` T ) <_ N ) ) |