Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineintmo.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
6 |
|
tglineintmo.b |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |
7 |
|
tglineintmo.c |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
8 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐺 ∈ TarskiG ) |
9 |
|
elssuni |
⊢ ( 𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿 ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran 𝐿 ) |
11 |
1 3 2
|
tglnunirn |
⊢ ( 𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃 ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → ∪ ran 𝐿 ⊆ 𝑃 ) |
13 |
10 12
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑃 ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 ⊆ 𝑃 ) |
15 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
16 |
15
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
17 |
14 16
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝑃 ) |
18 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
19 |
18
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
20 |
14 19
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝑃 ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ≠ 𝑦 ) |
22 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 ∈ ran 𝐿 ) |
23 |
1 2 3 8 17 20 21 21 22 16 19
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 = ( 𝑥 𝐿 𝑦 ) ) |
24 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐵 ∈ ran 𝐿 ) |
25 |
15
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝐵 ) |
26 |
18
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝐵 ) |
27 |
1 2 3 8 17 20 21 21 24 25 26
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐵 = ( 𝑥 𝐿 𝑦 ) ) |
28 |
23 27
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 = 𝐵 ) |
29 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 ≠ 𝐵 ) |
30 |
29
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ 𝐴 = 𝐵 ) |
31 |
28 30
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → ¬ 𝑥 ≠ 𝑦 ) |
32 |
|
nne |
⊢ ( ¬ 𝑥 ≠ 𝑦 ↔ 𝑥 = 𝑦 ) |
33 |
31 32
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → 𝑥 = 𝑦 ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
35 |
34
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
36 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
37 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
39 |
38
|
mo4 |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
40 |
35 39
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |