| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldom | ⊢ Rel   ≼ | 
						
							| 2 | 1 | brrelex2i | ⊢ ( ω  ≼  𝑋  →  𝑋  ∈  V ) | 
						
							| 3 |  | numth3 | ⊢ ( 𝑋  ∈  V  →  𝑋  ∈  dom  card ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ω  ≼  𝑋  →  𝑋  ∈  dom  card ) | 
						
							| 5 |  | csdfil | ⊢ ( ( 𝑋  ∈  dom  card  ∧  ω  ≼  𝑋 )  →  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 6 | 4 5 | mpancom | ⊢ ( ω  ≼  𝑋  →  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 7 |  | filssufil | ⊢ ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ∈  ( Fil ‘ 𝑋 )  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ω  ≼  𝑋  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓 ) | 
						
							| 9 |  | elfvex | ⊢ ( 𝑓  ∈  ( UFil ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 10 | 9 | ad2antlr | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  𝑋  ∈  V ) | 
						
							| 11 |  | ufilfil | ⊢ ( 𝑓  ∈  ( UFil ‘ 𝑋 )  →  𝑓  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 12 |  | filelss | ⊢ ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝑓 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 13 | 11 12 | sylan | ⊢ ( ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ∈  𝑓 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 15 |  | ssdomg | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ⊆  𝑋  →  𝑥  ≼  𝑋 ) ) | 
						
							| 16 | 10 14 15 | sylc | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  𝑥  ≼  𝑋 ) | 
						
							| 17 |  | filfbas | ⊢ ( 𝑓  ∈  ( Fil ‘ 𝑋 )  →  𝑓  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 18 | 11 17 | syl | ⊢ ( 𝑓  ∈  ( UFil ‘ 𝑋 )  →  𝑓  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  →  𝑓  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 20 |  | fbncp | ⊢ ( ( 𝑓  ∈  ( fBas ‘ 𝑋 )  ∧  𝑥  ∈  𝑓 )  →  ¬  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) | 
						
							| 21 | 19 20 | sylan | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  ¬  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) | 
						
							| 22 |  | difeq2 | ⊢ ( 𝑦  =  ( 𝑋  ∖  𝑥 )  →  ( 𝑋  ∖  𝑦 )  =  ( 𝑋  ∖  ( 𝑋  ∖  𝑥 ) ) ) | 
						
							| 23 | 22 | breq1d | ⊢ ( 𝑦  =  ( 𝑋  ∖  𝑥 )  →  ( ( 𝑋  ∖  𝑦 )  ≺  𝑋  ↔  ( 𝑋  ∖  ( 𝑋  ∖  𝑥 ) )  ≺  𝑋 ) ) | 
						
							| 24 |  | difss | ⊢ ( 𝑋  ∖  𝑥 )  ⊆  𝑋 | 
						
							| 25 |  | elpw2g | ⊢ ( 𝑋  ∈  V  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑥 )  ⊆  𝑋 ) ) | 
						
							| 26 | 24 25 | mpbiri | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  ∖  𝑥 )  ∈  𝒫  𝑋 ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  ( 𝑋  ∖  𝑥 )  ∈  𝒫  𝑋 ) | 
						
							| 28 |  | simp2 | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 29 |  | dfss4 | ⊢ ( 𝑥  ⊆  𝑋  ↔  ( 𝑋  ∖  ( 𝑋  ∖  𝑥 ) )  =  𝑥 ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  ( 𝑋  ∖  ( 𝑋  ∖  𝑥 ) )  =  𝑥 ) | 
						
							| 31 |  | simp3 | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  𝑥  ≺  𝑋 ) | 
						
							| 32 | 30 31 | eqbrtrd | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  ( 𝑋  ∖  ( 𝑋  ∖  𝑥 ) )  ≺  𝑋 ) | 
						
							| 33 | 23 27 32 | elrabd | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  ( 𝑋  ∖  𝑥 )  ∈  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 } ) | 
						
							| 34 |  | ssel | ⊢ ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ( ( 𝑋  ∖  𝑥 )  ∈  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  →  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) ) | 
						
							| 35 | 33 34 | syl5com | ⊢ ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋  ∧  𝑥  ≺  𝑋 )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) ) | 
						
							| 36 | 35 | 3expa | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋 )  ∧  𝑥  ≺  𝑋 )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) ) | 
						
							| 37 | 36 | impancom | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋 )  ∧  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓 )  →  ( 𝑥  ≺  𝑋  →  ( 𝑋  ∖  𝑥 )  ∈  𝑓 ) ) | 
						
							| 38 | 37 | con3d | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋 )  ∧  { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓 )  →  ( ¬  ( 𝑋  ∖  𝑥 )  ∈  𝑓  →  ¬  𝑥  ≺  𝑋 ) ) | 
						
							| 39 | 38 | impancom | ⊢ ( ( ( 𝑋  ∈  V  ∧  𝑥  ⊆  𝑋 )  ∧  ¬  ( 𝑋  ∖  𝑥 )  ∈  𝑓 )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ¬  𝑥  ≺  𝑋 ) ) | 
						
							| 40 | 10 14 21 39 | syl21anc | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ¬  𝑥  ≺  𝑋 ) ) | 
						
							| 41 |  | bren2 | ⊢ ( 𝑥  ≈  𝑋  ↔  ( 𝑥  ≼  𝑋  ∧  ¬  𝑥  ≺  𝑋 ) ) | 
						
							| 42 | 41 | simplbi2 | ⊢ ( 𝑥  ≼  𝑋  →  ( ¬  𝑥  ≺  𝑋  →  𝑥  ≈  𝑋 ) ) | 
						
							| 43 | 16 40 42 | sylsyld | ⊢ ( ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝑓 )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  𝑥  ≈  𝑋 ) ) | 
						
							| 44 | 43 | ralrimdva | ⊢ ( ( ω  ≼  𝑋  ∧  𝑓  ∈  ( UFil ‘ 𝑋 ) )  →  ( { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ∀ 𝑥  ∈  𝑓 𝑥  ≈  𝑋 ) ) | 
						
							| 45 | 44 | reximdva | ⊢ ( ω  ≼  𝑋  →  ( ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) { 𝑦  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑦 )  ≺  𝑋 }  ⊆  𝑓  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) ∀ 𝑥  ∈  𝑓 𝑥  ≈  𝑋 ) ) | 
						
							| 46 | 8 45 | mpd | ⊢ ( ω  ≼  𝑋  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) ∀ 𝑥  ∈  𝑓 𝑥  ≈  𝑋 ) |