| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldom |  |-  Rel ~<_ | 
						
							| 2 | 1 | brrelex2i |  |-  ( _om ~<_ X -> X e. _V ) | 
						
							| 3 |  | numth3 |  |-  ( X e. _V -> X e. dom card ) | 
						
							| 4 | 2 3 | syl |  |-  ( _om ~<_ X -> X e. dom card ) | 
						
							| 5 |  | csdfil |  |-  ( ( X e. dom card /\ _om ~<_ X ) -> { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) ) | 
						
							| 6 | 4 5 | mpancom |  |-  ( _om ~<_ X -> { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) ) | 
						
							| 7 |  | filssufil |  |-  ( { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) -> E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f ) | 
						
							| 8 | 6 7 | syl |  |-  ( _om ~<_ X -> E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f ) | 
						
							| 9 |  | elfvex |  |-  ( f e. ( UFil ` X ) -> X e. _V ) | 
						
							| 10 | 9 | ad2antlr |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> X e. _V ) | 
						
							| 11 |  | ufilfil |  |-  ( f e. ( UFil ` X ) -> f e. ( Fil ` X ) ) | 
						
							| 12 |  | filelss |  |-  ( ( f e. ( Fil ` X ) /\ x e. f ) -> x C_ X ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( f e. ( UFil ` X ) /\ x e. f ) -> x C_ X ) | 
						
							| 14 | 13 | adantll |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> x C_ X ) | 
						
							| 15 |  | ssdomg |  |-  ( X e. _V -> ( x C_ X -> x ~<_ X ) ) | 
						
							| 16 | 10 14 15 | sylc |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> x ~<_ X ) | 
						
							| 17 |  | filfbas |  |-  ( f e. ( Fil ` X ) -> f e. ( fBas ` X ) ) | 
						
							| 18 | 11 17 | syl |  |-  ( f e. ( UFil ` X ) -> f e. ( fBas ` X ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) -> f e. ( fBas ` X ) ) | 
						
							| 20 |  | fbncp |  |-  ( ( f e. ( fBas ` X ) /\ x e. f ) -> -. ( X \ x ) e. f ) | 
						
							| 21 | 19 20 | sylan |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> -. ( X \ x ) e. f ) | 
						
							| 22 |  | difeq2 |  |-  ( y = ( X \ x ) -> ( X \ y ) = ( X \ ( X \ x ) ) ) | 
						
							| 23 | 22 | breq1d |  |-  ( y = ( X \ x ) -> ( ( X \ y ) ~< X <-> ( X \ ( X \ x ) ) ~< X ) ) | 
						
							| 24 |  | difss |  |-  ( X \ x ) C_ X | 
						
							| 25 |  | elpw2g |  |-  ( X e. _V -> ( ( X \ x ) e. ~P X <-> ( X \ x ) C_ X ) ) | 
						
							| 26 | 24 25 | mpbiri |  |-  ( X e. _V -> ( X \ x ) e. ~P X ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ x ) e. ~P X ) | 
						
							| 28 |  | simp2 |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> x C_ X ) | 
						
							| 29 |  | dfss4 |  |-  ( x C_ X <-> ( X \ ( X \ x ) ) = x ) | 
						
							| 30 | 28 29 | sylib |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ ( X \ x ) ) = x ) | 
						
							| 31 |  | simp3 |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> x ~< X ) | 
						
							| 32 | 30 31 | eqbrtrd |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ ( X \ x ) ) ~< X ) | 
						
							| 33 | 23 27 32 | elrabd |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ x ) e. { y e. ~P X | ( X \ y ) ~< X } ) | 
						
							| 34 |  | ssel |  |-  ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( ( X \ x ) e. { y e. ~P X | ( X \ y ) ~< X } -> ( X \ x ) e. f ) ) | 
						
							| 35 | 33 34 | syl5com |  |-  ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( X \ x ) e. f ) ) | 
						
							| 36 | 35 | 3expa |  |-  ( ( ( X e. _V /\ x C_ X ) /\ x ~< X ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( X \ x ) e. f ) ) | 
						
							| 37 | 36 | impancom |  |-  ( ( ( X e. _V /\ x C_ X ) /\ { y e. ~P X | ( X \ y ) ~< X } C_ f ) -> ( x ~< X -> ( X \ x ) e. f ) ) | 
						
							| 38 | 37 | con3d |  |-  ( ( ( X e. _V /\ x C_ X ) /\ { y e. ~P X | ( X \ y ) ~< X } C_ f ) -> ( -. ( X \ x ) e. f -> -. x ~< X ) ) | 
						
							| 39 | 38 | impancom |  |-  ( ( ( X e. _V /\ x C_ X ) /\ -. ( X \ x ) e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> -. x ~< X ) ) | 
						
							| 40 | 10 14 21 39 | syl21anc |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> -. x ~< X ) ) | 
						
							| 41 |  | bren2 |  |-  ( x ~~ X <-> ( x ~<_ X /\ -. x ~< X ) ) | 
						
							| 42 | 41 | simplbi2 |  |-  ( x ~<_ X -> ( -. x ~< X -> x ~~ X ) ) | 
						
							| 43 | 16 40 42 | sylsyld |  |-  ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> x ~~ X ) ) | 
						
							| 44 | 43 | ralrimdva |  |-  ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> A. x e. f x ~~ X ) ) | 
						
							| 45 | 44 | reximdva |  |-  ( _om ~<_ X -> ( E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f -> E. f e. ( UFil ` X ) A. x e. f x ~~ X ) ) | 
						
							| 46 | 8 45 | mpd |  |-  ( _om ~<_ X -> E. f e. ( UFil ` X ) A. x e. f x ~~ X ) |