| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∉  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 4 |  | upgrres.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐸  ↾  𝐹 ) 〉 | 
						
							| 5 | 1 2 | usgrf | ⊢ ( 𝐺  ∈  USGraph  →  𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 6 | 3 | ssrab3 | ⊢ 𝐹  ⊆  dom  𝐸 | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  ⊆  dom  𝐸 ) | 
						
							| 8 |  | f1ssres | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ∧  𝐹  ⊆  dom  𝐸 )  →  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 9 | 5 7 8 | syl2an2r | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 10 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 11 | 1 2 3 | umgrreslem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 13 |  | f1ssr | ⊢ ( ( ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ∧  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } )  →  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 15 |  | ssdmres | ⊢ ( 𝐹  ⊆  dom  𝐸  ↔  dom  ( 𝐸  ↾  𝐹 )  =  𝐹 ) | 
						
							| 16 | 6 15 | mpbi | ⊢ dom  ( 𝐸  ↾  𝐹 )  =  𝐹 | 
						
							| 17 |  | f1eq2 | ⊢ ( dom  ( 𝐸  ↾  𝐹 )  =  𝐹  →  ( ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ( 𝐸  ↾  𝐹 ) : 𝐹 –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 19 | 14 18 | sylibr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 20 |  | opex | ⊢ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐸  ↾  𝐹 ) 〉  ∈  V | 
						
							| 21 | 4 20 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 22 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 23 | 22 | eqcomi | ⊢ ( 𝑉  ∖  { 𝑁 } )  =  ( Vtx ‘ 𝑆 ) | 
						
							| 24 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 )  =  ( 𝐸  ↾  𝐹 ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( 𝐸  ↾  𝐹 )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 26 | 23 25 | isusgrs | ⊢ ( 𝑆  ∈  V  →  ( 𝑆  ∈  USGraph  ↔  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 27 | 21 26 | mp1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑆  ∈  USGraph  ↔  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) –1-1→ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 28 | 19 27 | mpbird | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  USGraph ) |