| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∉  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 4 |  | df-ima | ⊢ ( 𝐸  “  𝐹 )  =  ran  ( 𝐸  ↾  𝐹 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 6 |  | neleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑗 )  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑖  =  𝑗  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 8 | 7 3 | elrab2 | ⊢ ( 𝑗  ∈  𝐹  ↔  ( 𝑗  ∈  dom  𝐸  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 9 | 1 2 | umgrf | ⊢ ( 𝐺  ∈  UMGraph  →  𝐸 : dom  𝐸 ⟶ { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝐸 : dom  𝐸 ⟶ { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ∧  𝑗  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑝  =  ( 𝐸 ‘ 𝑗 )  →  ( ( ♯ ‘ 𝑝 )  =  2  ↔  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 ) ) | 
						
							| 13 |  | simpll | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉 ) | 
						
							| 14 |  | elpwi | ⊢ ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  →  ( 𝐸 ‘ 𝑗 )  ⊆  𝑉 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  →  ( 𝐸 ‘ 𝑗 )  ⊆  𝑉 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ⊆  𝑉 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 18 |  | elpwdifsn | ⊢ ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( 𝐸 ‘ 𝑗 )  ⊆  𝑉  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 19 | 13 16 17 18 | syl3anc | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  →  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 ) | 
						
							| 22 | 11 19 21 | elrabd | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 24 | 23 | a1d | ⊢ ( ( ( 𝐸 ‘ 𝑗 )  ∈  𝒫  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) )  =  2 )  →  ( 𝑁  ∈  𝑉  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) | 
						
							| 25 | 12 24 | sylbi | ⊢ ( ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  →  ( 𝑁  ∈  𝑉  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) | 
						
							| 26 | 10 25 | syl | ⊢ ( ( 𝐸 : dom  𝐸 ⟶ { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ∧  𝑗  ∈  dom  𝐸 )  →  ( 𝑁  ∈  𝑉  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝐸 : dom  𝐸 ⟶ { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  →  ( 𝑗  ∈  dom  𝐸  →  ( 𝑁  ∈  𝑉  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) ) | 
						
							| 28 | 27 | com23 | ⊢ ( 𝐸 : dom  𝐸 ⟶ { 𝑝  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑝 )  =  2 }  →  ( 𝑁  ∈  𝑉  →  ( 𝑗  ∈  dom  𝐸  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) ) | 
						
							| 29 | 9 28 | syl | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝑁  ∈  𝑉  →  ( 𝑗  ∈  dom  𝐸  →  ( 𝑁  ∉  ( 𝐸 ‘ 𝑗 )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) ) ) | 
						
							| 30 | 29 | imp4b | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑗  ∈  dom  𝐸  ∧  𝑁  ∉  ( 𝐸 ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 31 | 8 30 | biimtrid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑗  ∈  𝐹  →  ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 32 | 31 | ralrimiv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑗  ∈  𝐹 ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 33 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 34 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐸 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝐺  ∈  UMGraph  →  Fun  𝐸 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  Fun  𝐸 ) | 
						
							| 37 | 3 | ssrab3 | ⊢ 𝐹  ⊆  dom  𝐸 | 
						
							| 38 |  | funimass4 | ⊢ ( ( Fun  𝐸  ∧  𝐹  ⊆  dom  𝐸 )  →  ( ( 𝐸  “  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ∀ 𝑗  ∈  𝐹 ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 39 | 36 37 38 | sylancl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝐸  “  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ∀ 𝑗  ∈  𝐹 ( 𝐸 ‘ 𝑗 )  ∈  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 40 | 32 39 | mpbird | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  “  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 41 | 4 40 | eqsstrrid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) |