| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∉  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 4 |  | upgrres.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐸  ↾  𝐹 ) 〉 | 
						
							| 5 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 6 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐸 ) | 
						
							| 7 |  | funres | ⊢ ( Fun  𝐸  →  Fun  ( 𝐸  ↾  𝐹 ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝐺  ∈  UMGraph  →  Fun  ( 𝐸  ↾  𝐹 ) ) | 
						
							| 9 | 8 | funfnd | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝐸  ↾  𝐹 )  Fn  dom  ( 𝐸  ↾  𝐹 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  ↾  𝐹 )  Fn  dom  ( 𝐸  ↾  𝐹 ) ) | 
						
							| 11 | 1 2 3 | umgrreslem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 12 |  | df-f | ⊢ ( ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 }  ↔  ( ( 𝐸  ↾  𝐹 )  Fn  dom  ( 𝐸  ↾  𝐹 )  ∧  ran  ( 𝐸  ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 14 |  | opex | ⊢ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐸  ↾  𝐹 ) 〉  ∈  V | 
						
							| 15 | 4 14 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 16 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 17 | 16 | eqcomi | ⊢ ( 𝑉  ∖  { 𝑁 } )  =  ( Vtx ‘ 𝑆 ) | 
						
							| 18 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 )  =  ( 𝐸  ↾  𝐹 ) | 
						
							| 19 | 18 | eqcomi | ⊢ ( 𝐸  ↾  𝐹 )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 20 | 17 19 | isumgrs | ⊢ ( 𝑆  ∈  V  →  ( 𝑆  ∈  UMGraph  ↔  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 21 | 15 20 | mp1i | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑆  ∈  UMGraph  ↔  ( 𝐸  ↾  𝐹 ) : dom  ( 𝐸  ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 22 | 13 21 | mpbird | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  UMGraph ) |