| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgrres.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | upgrres.f |  |-  F = { i e. dom E | N e/ ( E ` i ) } | 
						
							| 4 |  | upgrres.s |  |-  S = <. ( V \ { N } ) , ( E |` F ) >. | 
						
							| 5 |  | umgruhgr |  |-  ( G e. UMGraph -> G e. UHGraph ) | 
						
							| 6 | 2 | uhgrfun |  |-  ( G e. UHGraph -> Fun E ) | 
						
							| 7 |  | funres |  |-  ( Fun E -> Fun ( E |` F ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( G e. UMGraph -> Fun ( E |` F ) ) | 
						
							| 9 | 8 | funfnd |  |-  ( G e. UMGraph -> ( E |` F ) Fn dom ( E |` F ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( E |` F ) Fn dom ( E |` F ) ) | 
						
							| 11 | 1 2 3 | umgrreslem |  |-  ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 12 |  | df-f |  |-  ( ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( ( E |` F ) Fn dom ( E |` F ) /\ ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 13 | 10 11 12 | sylanbrc |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 14 |  | opex |  |-  <. ( V \ { N } ) , ( E |` F ) >. e. _V | 
						
							| 15 | 4 14 | eqeltri |  |-  S e. _V | 
						
							| 16 | 1 2 3 4 | uhgrspan1lem2 |  |-  ( Vtx ` S ) = ( V \ { N } ) | 
						
							| 17 | 16 | eqcomi |  |-  ( V \ { N } ) = ( Vtx ` S ) | 
						
							| 18 | 1 2 3 4 | uhgrspan1lem3 |  |-  ( iEdg ` S ) = ( E |` F ) | 
						
							| 19 | 18 | eqcomi |  |-  ( E |` F ) = ( iEdg ` S ) | 
						
							| 20 | 17 19 | isumgrs |  |-  ( S e. _V -> ( S e. UMGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 21 | 15 20 | mp1i |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 22 | 13 21 | mpbird |  |-  ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |