| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgrres.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | upgrres.f |  |-  F = { i e. dom E | N e/ ( E ` i ) } | 
						
							| 4 |  | upgrres.s |  |-  S = <. ( V \ { N } ) , ( E |` F ) >. | 
						
							| 5 | 1 2 | usgrf |  |-  ( G e. USGraph -> E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) | 
						
							| 6 | 3 | ssrab3 |  |-  F C_ dom E | 
						
							| 7 | 6 | a1i |  |-  ( ( G e. USGraph /\ N e. V ) -> F C_ dom E ) | 
						
							| 8 |  | f1ssres |  |-  ( ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ F C_ dom E ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) | 
						
							| 9 | 5 7 8 | syl2an2r |  |-  ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) | 
						
							| 10 |  | usgrumgr |  |-  ( G e. USGraph -> G e. UMGraph ) | 
						
							| 11 | 1 2 3 | umgrreslem |  |-  ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 12 | 10 11 | sylan |  |-  ( ( G e. USGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 13 |  | f1ssr |  |-  ( ( ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 14 | 9 12 13 | syl2anc |  |-  ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 15 |  | ssdmres |  |-  ( F C_ dom E <-> dom ( E |` F ) = F ) | 
						
							| 16 | 6 15 | mpbi |  |-  dom ( E |` F ) = F | 
						
							| 17 |  | f1eq2 |  |-  ( dom ( E |` F ) = F -> ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 18 | 16 17 | ax-mp |  |-  ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 19 | 14 18 | sylibr |  |-  ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 20 |  | opex |  |-  <. ( V \ { N } ) , ( E |` F ) >. e. _V | 
						
							| 21 | 4 20 | eqeltri |  |-  S e. _V | 
						
							| 22 | 1 2 3 4 | uhgrspan1lem2 |  |-  ( Vtx ` S ) = ( V \ { N } ) | 
						
							| 23 | 22 | eqcomi |  |-  ( V \ { N } ) = ( Vtx ` S ) | 
						
							| 24 | 1 2 3 4 | uhgrspan1lem3 |  |-  ( iEdg ` S ) = ( E |` F ) | 
						
							| 25 | 24 | eqcomi |  |-  ( E |` F ) = ( iEdg ` S ) | 
						
							| 26 | 23 25 | isusgrs |  |-  ( S e. _V -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 27 | 21 26 | mp1i |  |-  ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 28 | 19 27 | mpbird |  |-  ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |