Metamath Proof Explorer


Theorem usgrres

Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 ) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V=VtxG
upgrres.e E=iEdgG
upgrres.f F=idomE|NEi
upgrres.s S=VNEF
Assertion usgrres GUSGraphNVSUSGraph

Proof

Step Hyp Ref Expression
1 upgrres.v V=VtxG
2 upgrres.e E=iEdgG
3 upgrres.f F=idomE|NEi
4 upgrres.s S=VNEF
5 1 2 usgrf GUSGraphE:domE1-1x𝒫V|x=2
6 3 ssrab3 FdomE
7 6 a1i GUSGraphNVFdomE
8 f1ssres E:domE1-1x𝒫V|x=2FdomEEF:F1-1x𝒫V|x=2
9 5 7 8 syl2an2r GUSGraphNVEF:F1-1x𝒫V|x=2
10 usgrumgr GUSGraphGUMGraph
11 1 2 3 umgrreslem GUMGraphNVranEFp𝒫VN|p=2
12 10 11 sylan GUSGraphNVranEFp𝒫VN|p=2
13 f1ssr EF:F1-1x𝒫V|x=2ranEFp𝒫VN|p=2EF:F1-1p𝒫VN|p=2
14 9 12 13 syl2anc GUSGraphNVEF:F1-1p𝒫VN|p=2
15 ssdmres FdomEdomEF=F
16 6 15 mpbi domEF=F
17 f1eq2 domEF=FEF:domEF1-1p𝒫VN|p=2EF:F1-1p𝒫VN|p=2
18 16 17 ax-mp EF:domEF1-1p𝒫VN|p=2EF:F1-1p𝒫VN|p=2
19 14 18 sylibr GUSGraphNVEF:domEF1-1p𝒫VN|p=2
20 opex VNEFV
21 4 20 eqeltri SV
22 1 2 3 4 uhgrspan1lem2 VtxS=VN
23 22 eqcomi VN=VtxS
24 1 2 3 4 uhgrspan1lem3 iEdgS=EF
25 24 eqcomi EF=iEdgS
26 23 25 isusgrs SVSUSGraphEF:domEF1-1p𝒫VN|p=2
27 21 26 mp1i GUSGraphNVSUSGraphEF:domEF1-1p𝒫VN|p=2
28 19 27 mpbird GUSGraphNVSUSGraph