| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgrres.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | upgrres.f |  |-  F = { i e. dom E | N e/ ( E ` i ) } | 
						
							| 4 |  | df-ima |  |-  ( E " F ) = ran ( E |` F ) | 
						
							| 5 |  | fveq2 |  |-  ( i = j -> ( E ` i ) = ( E ` j ) ) | 
						
							| 6 |  | neleq2 |  |-  ( ( E ` i ) = ( E ` j ) -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( i = j -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) | 
						
							| 8 | 7 3 | elrab2 |  |-  ( j e. F <-> ( j e. dom E /\ N e/ ( E ` j ) ) ) | 
						
							| 9 | 1 2 | umgrf |  |-  ( G e. UMGraph -> E : dom E --> { p e. ~P V | ( # ` p ) = 2 } ) | 
						
							| 10 |  | ffvelcdm |  |-  ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } ) | 
						
							| 11 |  | fveqeq2 |  |-  ( p = ( E ` j ) -> ( ( # ` p ) = 2 <-> ( # ` ( E ` j ) ) = 2 ) ) | 
						
							| 12 | 11 | elrab |  |-  ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } <-> ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) ) | 
						
							| 13 |  | simpll |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P V ) | 
						
							| 14 |  | elpwi |  |-  ( ( E ` j ) e. ~P V -> ( E ` j ) C_ V ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( E ` j ) C_ V ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) C_ V ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> N e/ ( E ` j ) ) | 
						
							| 18 |  | elpwdifsn |  |-  ( ( ( E ` j ) e. ~P V /\ ( E ` j ) C_ V /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) | 
						
							| 19 | 13 16 17 18 | syl3anc |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( # ` ( E ` j ) ) = 2 ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( # ` ( E ` j ) ) = 2 ) | 
						
							| 22 | 11 19 21 | elrabd |  |-  ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 24 | 23 | a1d |  |-  ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) | 
						
							| 25 | 12 24 | sylbi |  |-  ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) | 
						
							| 26 | 10 25 | syl |  |-  ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) | 
						
							| 27 | 26 | ex |  |-  ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( j e. dom E -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) | 
						
							| 28 | 27 | com23 |  |-  ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) | 
						
							| 29 | 9 28 | syl |  |-  ( G e. UMGraph -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) | 
						
							| 30 | 29 | imp4b |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( ( j e. dom E /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 31 | 8 30 | biimtrid |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( j e. F -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 32 | 31 | ralrimiv |  |-  ( ( G e. UMGraph /\ N e. V ) -> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 33 |  | umgruhgr |  |-  ( G e. UMGraph -> G e. UHGraph ) | 
						
							| 34 | 2 | uhgrfun |  |-  ( G e. UHGraph -> Fun E ) | 
						
							| 35 | 33 34 | syl |  |-  ( G e. UMGraph -> Fun E ) | 
						
							| 36 | 35 | adantr |  |-  ( ( G e. UMGraph /\ N e. V ) -> Fun E ) | 
						
							| 37 | 3 | ssrab3 |  |-  F C_ dom E | 
						
							| 38 |  | funimass4 |  |-  ( ( Fun E /\ F C_ dom E ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 39 | 36 37 38 | sylancl |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 40 | 32 39 | mpbird |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 41 | 4 40 | eqsstrrid |  |-  ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |