Step |
Hyp |
Ref |
Expression |
1 |
|
axc11n |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑥 𝑥 = 𝑦 ) |
2 |
1
|
con3i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
3 |
|
wl-ax11-lem1 |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑥 ↔ ∀ 𝑦 𝑦 = 𝑥 ) ) |
4 |
3
|
notbid |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑢 𝑢 = 𝑥 ↔ ¬ ∀ 𝑦 𝑦 = 𝑥 ) ) |
5 |
4
|
anbi1d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) ) |
6 |
4
|
anbi1d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) ) |
7 |
|
axc11n |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |
8 |
7
|
con3i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
9 |
|
wl-ax11-lem4 |
⊢ Ⅎ 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
10 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑢 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) ) |
11 |
10
|
equcoms |
⊢ ( 𝑢 = 𝑦 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) ) |
12 |
11
|
sps |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) ) |
13 |
12
|
adantr |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) ) |
14 |
9 13
|
albid |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) |
15 |
14
|
ex |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) ) |
16 |
8 15
|
syl5 |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) ) |
17 |
16
|
pm5.32d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) ) |
18 |
6 17
|
bitr4d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ) ) |
19 |
18
|
dral1 |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ) ) |
20 |
|
wl-ax11-lem7 |
⊢ ( ∀ 𝑢 ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) |
21 |
|
wl-ax11-lem7 |
⊢ ( ∀ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |
22 |
19 20 21
|
3bitr3g |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) |
23 |
5 22
|
bitr3d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) |
24 |
|
pm5.32 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ↔ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) |
25 |
23 24
|
sylibr |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) |
26 |
25
|
imp |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |
27 |
2 26
|
sylan2 |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |