| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axc11n | ⊢ ( ∀ 𝑦 𝑦  =  𝑥  →  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 2 | 1 | con3i | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑦 𝑦  =  𝑥 ) | 
						
							| 3 |  | wl-ax11-lem1 | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ∀ 𝑢 𝑢  =  𝑥  ↔  ∀ 𝑦 𝑦  =  𝑥 ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ¬  ∀ 𝑢 𝑢  =  𝑥  ↔  ¬  ∀ 𝑦 𝑦  =  𝑥 ) ) | 
						
							| 5 | 4 | anbi1d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 6 | 4 | anbi1d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 7 |  | axc11n | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 𝑦  =  𝑥 ) | 
						
							| 8 | 7 | con3i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ¬  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 9 |  | wl-ax11-lem4 | ⊢ Ⅎ 𝑥 ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 10 |  | sbequ12 | ⊢ ( 𝑦  =  𝑢  →  ( 𝜑  ↔  [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 11 | 10 | equcoms | ⊢ ( 𝑢  =  𝑦  →  ( 𝜑  ↔  [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 12 | 11 | sps | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( 𝜑  ↔  [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ( 𝜑  ↔  [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 14 | 9 13 | albid | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ( ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 16 | 8 15 | syl5 | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 17 | 16 | pm5.32d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 18 | 6 17 | bitr4d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 𝜑 ) ) ) | 
						
							| 19 | 18 | dral1 | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ∀ 𝑢 ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ∀ 𝑦 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 𝜑 ) ) ) | 
						
							| 20 |  | wl-ax11-lem7 | ⊢ ( ∀ 𝑢 ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) ) | 
						
							| 21 |  | wl-ax11-lem7 | ⊢ ( ∀ 𝑦 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑥 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) | 
						
							| 22 | 19 20 21 | 3bitr3g | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑢 𝑢  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) | 
						
							| 23 | 5 22 | bitr3d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) | 
						
							| 24 |  | pm5.32 | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 𝜑 ) )  ↔  ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 )  ↔  ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) | 
						
							| 27 | 2 26 | sylan2 | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |