Metamath Proof Explorer


Theorem wl-ax11-lem8

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem8 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axc11n ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑥 𝑥 = 𝑦 )
2 1 con3i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑦 𝑦 = 𝑥 )
3 wl-ax11-lem1 ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑥 ↔ ∀ 𝑦 𝑦 = 𝑥 ) )
4 3 notbid ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑢 𝑢 = 𝑥 ↔ ¬ ∀ 𝑦 𝑦 = 𝑥 ) )
5 4 anbi1d ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) )
6 4 anbi1d ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) )
7 axc11n ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 )
8 7 con3i ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑥 = 𝑦 )
9 wl-ax11-lem4 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )
10 sbequ12 ( 𝑦 = 𝑢 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) )
11 10 equcoms ( 𝑢 = 𝑦 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) )
12 11 sps ( ∀ 𝑢 𝑢 = 𝑦 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) )
13 12 adantr ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜑 ) )
14 9 13 albid ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) )
15 14 ex ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) )
16 8 15 syl5 ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) )
17 16 pm5.32d ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ) )
18 6 17 bitr4d ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ) )
19 18 dral1 ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ) )
20 wl-ax11-lem7 ( ∀ 𝑢 ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) )
21 wl-ax11-lem7 ( ∀ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑥 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦𝑥 𝜑 ) )
22 19 20 21 3bitr3g ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑢 𝑢 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦𝑥 𝜑 ) ) )
23 5 22 bitr3d ( ∀ 𝑢 𝑢 = 𝑦 → ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦𝑥 𝜑 ) ) )
24 pm5.32 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜑 ) ) ↔ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) ↔ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ∀ 𝑦𝑥 𝜑 ) ) )
25 23 24 sylibr ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜑 ) ) )
26 25 imp ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜑 ) )
27 2 26 sylan2 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜑 ) )