| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) |
| 2 |
|
elxnn0 |
⊢ ( 𝐵 ∈ ℕ0* ↔ ( 𝐵 ∈ ℕ0 ∨ 𝐵 = +∞ ) ) |
| 3 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 4 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
| 5 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |
| 8 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 9 |
3 8
|
jca |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 10 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
| 11 |
4 10
|
jca |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 12 |
|
add20 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 13 |
9 11 12
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 14 |
7 13
|
bitrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 16 |
15
|
expcom |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝐵 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 +𝑒 +∞ ) ) |
| 18 |
17
|
eqeq1d |
⊢ ( 𝐵 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 +𝑒 +∞ ) = 0 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 +𝑒 +∞ ) = 0 ) ) |
| 20 |
|
nn0xnn0 |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0* ) |
| 21 |
|
xnn0xrnemnf |
⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 22 |
|
xaddpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 23 |
20 21 22
|
3syl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 25 |
24
|
eqeq1d |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 +∞ ) = 0 ↔ +∞ = 0 ) ) |
| 26 |
19 25
|
bitrd |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 27 |
|
0re |
⊢ 0 ∈ ℝ |
| 28 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
| 29 |
27 28
|
ax-mp |
⊢ 0 ≠ +∞ |
| 30 |
29
|
nesymi |
⊢ ¬ +∞ = 0 |
| 31 |
30
|
pm2.21i |
⊢ ( +∞ = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 32 |
26 31
|
biimtrdi |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 33 |
32
|
ex |
⊢ ( 𝐵 = +∞ → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 34 |
16 33
|
jaoi |
⊢ ( ( 𝐵 ∈ ℕ0 ∨ 𝐵 = +∞ ) → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 35 |
2 34
|
sylbi |
⊢ ( 𝐵 ∈ ℕ0* → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 36 |
35
|
com12 |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) |
| 38 |
37
|
eqeq1d |
⊢ ( 𝐴 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( +∞ +𝑒 𝐵 ) = 0 ) ) |
| 39 |
|
xnn0xrnemnf |
⊢ ( 𝐵 ∈ ℕ0* → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) |
| 40 |
|
xaddpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 41 |
39 40
|
syl |
⊢ ( 𝐵 ∈ ℕ0* → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 42 |
41
|
eqeq1d |
⊢ ( 𝐵 ∈ ℕ0* → ( ( +∞ +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 43 |
38 42
|
sylan9bb |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 44 |
43 31
|
biimtrdi |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 45 |
44
|
ex |
⊢ ( 𝐴 = +∞ → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 46 |
36 45
|
jaoi |
⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 47 |
1 46
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0* → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 48 |
47
|
imp |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 49 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 +𝑒 𝐵 ) = ( 0 +𝑒 0 ) ) |
| 50 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 51 |
|
xaddrid |
⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) |
| 52 |
50 51
|
ax-mp |
⊢ ( 0 +𝑒 0 ) = 0 |
| 53 |
49 52
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 +𝑒 𝐵 ) = 0 ) |
| 54 |
48 53
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |