| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
|- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) |
| 2 |
|
elxnn0 |
|- ( B e. NN0* <-> ( B e. NN0 \/ B = +oo ) ) |
| 3 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 4 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 5 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A +e B ) = ( A + B ) ) |
| 7 |
6
|
eqeq1d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A + B ) = 0 ) ) |
| 8 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 9 |
3 8
|
jca |
|- ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) |
| 10 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
| 11 |
4 10
|
jca |
|- ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) |
| 12 |
|
add20 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 13 |
9 11 12
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 14 |
7 13
|
bitrd |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 15 |
14
|
biimpd |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 16 |
15
|
expcom |
|- ( B e. NN0 -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 17 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
| 18 |
17
|
eqeq1d |
|- ( B = +oo -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) |
| 19 |
18
|
adantr |
|- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) |
| 20 |
|
nn0xnn0 |
|- ( A e. NN0 -> A e. NN0* ) |
| 21 |
|
xnn0xrnemnf |
|- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
| 22 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 23 |
20 21 22
|
3syl |
|- ( A e. NN0 -> ( A +e +oo ) = +oo ) |
| 24 |
23
|
adantl |
|- ( ( B = +oo /\ A e. NN0 ) -> ( A +e +oo ) = +oo ) |
| 25 |
24
|
eqeq1d |
|- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e +oo ) = 0 <-> +oo = 0 ) ) |
| 26 |
19 25
|
bitrd |
|- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) |
| 27 |
|
0re |
|- 0 e. RR |
| 28 |
|
renepnf |
|- ( 0 e. RR -> 0 =/= +oo ) |
| 29 |
27 28
|
ax-mp |
|- 0 =/= +oo |
| 30 |
29
|
nesymi |
|- -. +oo = 0 |
| 31 |
30
|
pm2.21i |
|- ( +oo = 0 -> ( A = 0 /\ B = 0 ) ) |
| 32 |
26 31
|
biimtrdi |
|- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 33 |
32
|
ex |
|- ( B = +oo -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 34 |
16 33
|
jaoi |
|- ( ( B e. NN0 \/ B = +oo ) -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 35 |
2 34
|
sylbi |
|- ( B e. NN0* -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 36 |
35
|
com12 |
|- ( A e. NN0 -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 37 |
|
oveq1 |
|- ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) |
| 38 |
37
|
eqeq1d |
|- ( A = +oo -> ( ( A +e B ) = 0 <-> ( +oo +e B ) = 0 ) ) |
| 39 |
|
xnn0xrnemnf |
|- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
| 40 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
| 41 |
39 40
|
syl |
|- ( B e. NN0* -> ( +oo +e B ) = +oo ) |
| 42 |
41
|
eqeq1d |
|- ( B e. NN0* -> ( ( +oo +e B ) = 0 <-> +oo = 0 ) ) |
| 43 |
38 42
|
sylan9bb |
|- ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) |
| 44 |
43 31
|
biimtrdi |
|- ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 45 |
44
|
ex |
|- ( A = +oo -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 46 |
36 45
|
jaoi |
|- ( ( A e. NN0 \/ A = +oo ) -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 47 |
1 46
|
sylbi |
|- ( A e. NN0* -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 48 |
47
|
imp |
|- ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 49 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = ( 0 +e 0 ) ) |
| 50 |
|
0xr |
|- 0 e. RR* |
| 51 |
|
xaddrid |
|- ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) |
| 52 |
50 51
|
ax-mp |
|- ( 0 +e 0 ) = 0 |
| 53 |
49 52
|
eqtrdi |
|- ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = 0 ) |
| 54 |
48 53
|
impbid1 |
|- ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |