| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhpsgninv.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 2 |
|
zrhpsgninv.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
| 3 |
|
zrhpsgninv.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 4 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 5 |
4 3 1
|
psgninv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑆 ‘ ◡ 𝐹 ) = ( 𝑆 ‘ 𝐹 ) ) |
| 6 |
5
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑆 ‘ ◡ 𝐹 ) = ( 𝑆 ‘ 𝐹 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 8 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 9 |
4 3 8
|
psgnghm2 |
⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 11 |
1 10
|
ghmf |
⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 12 |
9 11
|
syl |
⊢ ( 𝑁 ∈ Fin → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 14 |
|
eqid |
⊢ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) = ( invg ‘ ( SymGrp ‘ 𝑁 ) ) |
| 15 |
4 1 14
|
symginv |
⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 17 |
4
|
symggrp |
⊢ ( 𝑁 ∈ Fin → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 19 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝐹 ∈ 𝑃 ) |
| 20 |
1 14
|
grpinvcl |
⊢ ( ( ( SymGrp ‘ 𝑁 ) ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 22 |
16 21
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ◡ 𝐹 ∈ 𝑃 ) |
| 23 |
|
fvco3 |
⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ ◡ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 24 |
13 22 23
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 25 |
|
fvco3 |
⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 26 |
13 19 25
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 27 |
7 24 26
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) ) |