Metamath Proof Explorer


Theorem zrhpsgninv

Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgninv.p P=BaseSymGrpN
zrhpsgninv.y Y=ℤRHomR
zrhpsgninv.s S=pmSgnN
Assertion zrhpsgninv RRingNFinFPYSF-1=YSF

Proof

Step Hyp Ref Expression
1 zrhpsgninv.p P=BaseSymGrpN
2 zrhpsgninv.y Y=ℤRHomR
3 zrhpsgninv.s S=pmSgnN
4 eqid SymGrpN=SymGrpN
5 4 3 1 psgninv NFinFPSF-1=SF
6 5 3adant1 RRingNFinFPSF-1=SF
7 6 fveq2d RRingNFinFPYSF-1=YSF
8 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
9 4 3 8 psgnghm2 NFinSSymGrpNGrpHommulGrpfld𝑠11
10 eqid BasemulGrpfld𝑠11=BasemulGrpfld𝑠11
11 1 10 ghmf SSymGrpNGrpHommulGrpfld𝑠11S:PBasemulGrpfld𝑠11
12 9 11 syl NFinS:PBasemulGrpfld𝑠11
13 12 3ad2ant2 RRingNFinFPS:PBasemulGrpfld𝑠11
14 eqid invgSymGrpN=invgSymGrpN
15 4 1 14 symginv FPinvgSymGrpNF=F-1
16 15 3ad2ant3 RRingNFinFPinvgSymGrpNF=F-1
17 4 symggrp NFinSymGrpNGrp
18 17 3ad2ant2 RRingNFinFPSymGrpNGrp
19 simp3 RRingNFinFPFP
20 1 14 grpinvcl SymGrpNGrpFPinvgSymGrpNFP
21 18 19 20 syl2anc RRingNFinFPinvgSymGrpNFP
22 16 21 eqeltrrd RRingNFinFPF-1P
23 fvco3 S:PBasemulGrpfld𝑠11F-1PYSF-1=YSF-1
24 13 22 23 syl2anc RRingNFinFPYSF-1=YSF-1
25 fvco3 S:PBasemulGrpfld𝑠11FPYSF=YSF
26 13 19 25 syl2anc RRingNFinFPYSF=YSF
27 7 24 26 3eqtr4d RRingNFinFPYSF-1=YSF