Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Unicode version |
Description: Lemma for infpssr 8709. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | |
infpssrlem.c | |
infpssrlem.d | |
infpssrlem.e |
Ref | Expression |
---|---|
infpssrlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 7119 | . . . 4 | |
2 | infpssrlem.e | . . . . 5 | |
3 | 2 | fneq1i 5680 | . . . 4 |
4 | 1, 3 | mpbir 209 | . . 3 |
5 | 4 | a1i 11 | . 2 |
6 | fveq2 5871 | . . . . . 6 | |
7 | 6 | eleq1d 2526 | . . . . 5 |
8 | fveq2 5871 | . . . . . 6 | |
9 | 8 | eleq1d 2526 | . . . . 5 |
10 | fveq2 5871 | . . . . . 6 | |
11 | 10 | eleq1d 2526 | . . . . 5 |
12 | infpssrlem.a | . . . . . . 7 | |
13 | infpssrlem.c | . . . . . . 7 | |
14 | infpssrlem.d | . . . . . . 7 | |
15 | 12, 13, 14, 2 | infpssrlem1 8704 | . . . . . 6 |
16 | 14 | eldifad 3487 | . . . . . 6 |
17 | 15, 16 | eqeltrd 2545 | . . . . 5 |
18 | 12 | adantr 465 | . . . . . . . 8 |
19 | f1ocnv 5833 | . . . . . . . . . 10 | |
20 | f1of 5821 | . . . . . . . . . 10 | |
21 | 13, 19, 20 | 3syl 20 | . . . . . . . . 9 |
22 | 21 | ffvelrnda 6031 | . . . . . . . 8 |
23 | 18, 22 | sseldd 3504 | . . . . . . 7 |
24 | 12, 13, 14, 2 | infpssrlem2 8705 | . . . . . . . 8 |
25 | 24 | eleq1d 2526 | . . . . . . 7 |
26 | 23, 25 | syl5ibr 221 | . . . . . 6 |
27 | 26 | expd 436 | . . . . 5 |
28 | 7, 9, 11, 17, 27 | finds2 6728 | . . . 4 |
29 | 28 | com12 31 | . . 3 |
30 | 29 | ralrimiv 2869 | . 2 |
31 | ffnfv 6057 | . 2 | |
32 | 5, 30, 31 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
\ cdif 3472 C_ wss 3475 c0 3784 suc csuc 4885 `' ccnv 5003
|` cres 5006 Fn wfn 5588 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 com 6700
rec crdg 7094 |
This theorem is referenced by: infpssrlem4 8707 infpssrlem5 8708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |