Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssr | Unicode version |
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
infpssr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel 3893 | . . 3 | |
2 | 1 | adantr 465 | . 2 |
3 | eldif 3485 | . . . 4 | |
4 | pssss 3598 | . . . . . 6 | |
5 | bren 7545 | . . . . . . . 8 | |
6 | simpr 461 | . . . . . . . . . . . . 13 | |
7 | f1ofo 5828 | . . . . . . . . . . . . 13 | |
8 | forn 5803 | . . . . . . . . . . . . 13 | |
9 | 6, 7, 8 | 3syl 20 | . . . . . . . . . . . 12 |
10 | vex 3112 | . . . . . . . . . . . . 13 | |
11 | 10 | rnex 6734 | . . . . . . . . . . . 12 |
12 | 9, 11 | syl6eqelr 2554 | . . . . . . . . . . 11 |
13 | simplr 755 | . . . . . . . . . . . 12 | |
14 | simpll 753 | . . . . . . . . . . . 12 | |
15 | eqid 2457 | . . . . . . . . . . . 12 | |
16 | 13, 6, 14, 15 | infpssrlem5 8708 | . . . . . . . . . . 11 |
17 | 12, 16 | mpd 15 | . . . . . . . . . 10 |
18 | 17 | ex 434 | . . . . . . . . 9 |
19 | 18 | exlimdv 1724 | . . . . . . . 8 |
20 | 5, 19 | syl5bi 217 | . . . . . . 7 |
21 | 20 | ex 434 | . . . . . 6 |
22 | 4, 21 | syl5 32 | . . . . 5 |
23 | 22 | impd 431 | . . . 4 |
24 | 3, 23 | sylbir 213 | . . 3 |
25 | 24 | exlimiv 1722 | . 2 |
26 | 2, 25 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
\ cdif 3472 C_ wss 3475 C. wpss 3476
class class class wbr 4452 `' ccnv 5003
ran crn 5005 |` cres 5006 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 com 6700
rec crdg 7094
cen 7533 cdom 7534 |
This theorem is referenced by: isfin4-2 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |