Step |
Hyp |
Ref |
Expression |
1 |
|
pssnel |
⊢ ( 𝑋 ⊊ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) |
3 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) |
4 |
|
pssss |
⊢ ( 𝑋 ⊊ 𝐴 → 𝑋 ⊆ 𝐴 ) |
5 |
|
bren |
⊢ ( 𝑋 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) |
6 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) |
7 |
|
f1ofo |
⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → 𝑓 : 𝑋 –onto→ 𝐴 ) |
8 |
|
forn |
⊢ ( 𝑓 : 𝑋 –onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
9 |
6 7 8
|
3syl |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ran 𝑓 = 𝐴 ) |
10 |
|
vex |
⊢ 𝑓 ∈ V |
11 |
10
|
rnex |
⊢ ran 𝑓 ∈ V |
12 |
9 11
|
eqeltrrdi |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝐴 ∈ V ) |
13 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
14 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ) |
15 |
|
eqid |
⊢ ( rec ( ◡ 𝑓 , 𝑦 ) ↾ ω ) = ( rec ( ◡ 𝑓 , 𝑦 ) ↾ ω ) |
16 |
13 6 14 15
|
infpssrlem5 |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ( 𝐴 ∈ V → ω ≼ 𝐴 ) ) |
17 |
12 16
|
mpd |
⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ω ≼ 𝐴 ) |
18 |
17
|
ex |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → ω ≼ 𝐴 ) ) |
19 |
18
|
exlimdv |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴 → ω ≼ 𝐴 ) ) |
20 |
5 19
|
syl5bi |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) |
21 |
20
|
ex |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( 𝑋 ⊆ 𝐴 → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) ) |
22 |
4 21
|
syl5 |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( 𝑋 ⊊ 𝐴 → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) ) |
23 |
22
|
impd |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
24 |
3 23
|
sylbir |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
26 |
2 25
|
mpcom |
⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) |