Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem4 | Unicode version |
Description: Lemma for isfin3-2 8768. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | |
isf32lem.b | |
isf32lem.c |
Ref | Expression |
---|---|
isf32lem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrr 762 | . . 3 | |
2 | simplrl 761 | . . 3 | |
3 | simpr 461 | . . 3 | |
4 | simplll 759 | . . 3 | |
5 | incom 3690 | . . . 4 | |
6 | isf32lem.a | . . . . 5 | |
7 | isf32lem.b | . . . . 5 | |
8 | isf32lem.c | . . . . 5 | |
9 | 6, 7, 8 | isf32lem3 8756 | . . . 4 |
10 | 5, 9 | syl5eq 2510 | . . 3 |
11 | 1, 2, 3, 4, 10 | syl22anc 1229 | . 2 |
12 | simplrl 761 | . . 3 | |
13 | simplrr 762 | . . 3 | |
14 | simpr 461 | . . 3 | |
15 | simplll 759 | . . 3 | |
16 | 6, 7, 8 | isf32lem3 8756 | . . 3 |
17 | 12, 13, 14, 15, 16 | syl22anc 1229 | . 2 |
18 | simplr 755 | . . 3 | |
19 | nnord 6708 | . . . . . 6 | |
20 | nnord 6708 | . . . . . 6 | |
21 | ordtri3 4919 | . . . . . 6 | |
22 | 19, 20, 21 | syl2an 477 | . . . . 5 |
23 | 22 | adantl 466 | . . . 4 |
24 | 23 | necon2abid 2711 | . . 3 |
25 | 18, 24 | mpbird 232 | . 2 |
26 | 11, 17, 25 | mpjaodan 786 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 \ cdif 3472 i^i cin 3474
C_ wss 3475 c0 3784 ~P cpw 4012 |^| cint 4286
Ord word 4882
suc csuc 4885
ran crn 5005 --> wf 5589 ` cfv 5593
com 6700 |
This theorem is referenced by: isf32lem7 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-iota 5556 df-fv 5601 df-om 6701 |
Copyright terms: Public domain | W3C validator |