MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv2 Unicode version

Theorem isocnv2 6227
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2

Proof of Theorem isocnv2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3018 . . . 4
2 vex 3112 . . . . . . 7
3 vex 3112 . . . . . . 7
42, 3brcnv 5190 . . . . . 6
5 fvex 5881 . . . . . . 7
6 fvex 5881 . . . . . . 7
75, 6brcnv 5190 . . . . . 6
84, 7bibi12i 315 . . . . 5
982ralbii 2889 . . . 4
101, 9bitr4i 252 . . 3
1110anbi2i 694 . 2
12 df-isom 5602 . 2
13 df-isom 5602 . 2
1411, 12, 133bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wral 2807   class class class wbr 4452  `'ccnv 5003  -1-1-onto->wf1o 5592  `cfv 5593  Isomwiso 5594
This theorem is referenced by:  wofib  7991  leiso  12508  gtiso  27519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-cnv 5012  df-iota 5556  df-fv 5601  df-isom 5602
  Copyright terms: Public domain W3C validator