Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isocnv | Unicode version |
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isocnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5833 | . . . 4 | |
2 | 1 | adantr 465 | . . 3 |
3 | f1ocnvfv2 6183 | . . . . . . . 8 | |
4 | 3 | adantrr 716 | . . . . . . 7 |
5 | f1ocnvfv2 6183 | . . . . . . . 8 | |
6 | 5 | adantrl 715 | . . . . . . 7 |
7 | 4, 6 | breq12d 4465 | . . . . . 6 |
8 | 7 | adantlr 714 | . . . . 5 |
9 | f1of 5821 | . . . . . . 7 | |
10 | 1, 9 | syl 16 | . . . . . 6 |
11 | ffvelrn 6029 | . . . . . . . . 9 | |
12 | ffvelrn 6029 | . . . . . . . . 9 | |
13 | 11, 12 | anim12dan 837 | . . . . . . . 8 |
14 | breq1 4455 | . . . . . . . . . . 11 | |
15 | fveq2 5871 | . . . . . . . . . . . 12 | |
16 | 15 | breq1d 4462 | . . . . . . . . . . 11 |
17 | 14, 16 | bibi12d 321 | . . . . . . . . . 10 |
18 | bicom 200 | . . . . . . . . . 10 | |
19 | 17, 18 | syl6bb 261 | . . . . . . . . 9 |
20 | fveq2 5871 | . . . . . . . . . . 11 | |
21 | 20 | breq2d 4464 | . . . . . . . . . 10 |
22 | breq2 4456 | . . . . . . . . . 10 | |
23 | 21, 22 | bibi12d 321 | . . . . . . . . 9 |
24 | 19, 23 | rspc2va 3220 | . . . . . . . 8 |
25 | 13, 24 | sylan 471 | . . . . . . 7 |
26 | 25 | an32s 804 | . . . . . 6 |
27 | 10, 26 | sylanl1 650 | . . . . 5 |
28 | 8, 27 | bitr3d 255 | . . . 4 |
29 | 28 | ralrimivva 2878 | . . 3 |
30 | 2, 29 | jca 532 | . 2 |
31 | df-isom 5602 | . 2 | |
32 | df-isom 5602 | . 2 | |
33 | 30, 31, 32 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 class class class wbr 4452
`' ccnv 5003 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: isores1 6230 isofr 6238 isose 6239 isopo 6242 isoso 6244 weisoeq 6251 weisoeq2 6252 fnwelem 6915 oieu 7985 oemapwe 8134 cantnffval2 8135 oemapweOLD 8156 cantnffval2OLD 8157 wemapwe 8160 wemapweOLD 8161 infxpenlem 8412 fpwwe2lem7 9035 fpwwe2lem9 9037 infmsup 10546 ltweuz 12072 fz1isolem 12510 ordthmeo 20303 relogiso 22982 erdsze2lem2 28648 fzisoeu 31500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |