Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmsup | Unicode version |
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals is the negative of the supremum of the negatives of its elements. The antecedent ensures that is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
infmsup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gtso 9687 | . . . . . 6 | |
2 | 1 | a1i 11 | . . . . 5 |
3 | infm3 10527 | . . . . . 6 | |
4 | vex 3112 | . . . . . . . . . . 11 | |
5 | vex 3112 | . . . . . . . . . . 11 | |
6 | 4, 5 | brcnv 5190 | . . . . . . . . . 10 |
7 | 6 | notbii 296 | . . . . . . . . 9 |
8 | 7 | ralbii 2888 | . . . . . . . 8 |
9 | 5, 4 | brcnv 5190 | . . . . . . . . . 10 |
10 | vex 3112 | . . . . . . . . . . . 12 | |
11 | 5, 10 | brcnv 5190 | . . . . . . . . . . 11 |
12 | 11 | rexbii 2959 | . . . . . . . . . 10 |
13 | 9, 12 | imbi12i 326 | . . . . . . . . 9 |
14 | 13 | ralbii 2888 | . . . . . . . 8 |
15 | 8, 14 | anbi12i 697 | . . . . . . 7 |
16 | 15 | rexbii 2959 | . . . . . 6 |
17 | 3, 16 | sylibr 212 | . . . . 5 |
18 | 2, 17 | supcl 7938 | . . . 4 |
19 | 18 | recnd 9643 | . . 3 |
20 | 19 | negnegd 9945 | . 2 |
21 | eqid 2457 | . . . . . . . 8 | |
22 | 21 | mptpreima 5505 | . . . . . . 7 |
23 | 21 | negiso 10544 | . . . . . . . . 9 |
24 | 23 | simpri 462 | . . . . . . . 8 |
25 | 24 | imaeq1i 5339 | . . . . . . 7 |
26 | 22, 25 | eqtr3i 2488 | . . . . . 6 |
27 | 26 | supeq1i 7927 | . . . . 5 |
28 | 23 | simpli 458 | . . . . . . . . 9 |
29 | isocnv 6226 | . . . . . . . . 9 | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 |
31 | isoeq1 6215 | . . . . . . . . 9 | |
32 | 24, 31 | ax-mp 5 | . . . . . . . 8 |
33 | 30, 32 | mpbi 208 | . . . . . . 7 |
34 | 33 | a1i 11 | . . . . . 6 |
35 | simp1 996 | . . . . . 6 | |
36 | 34, 35, 17, 2 | supiso 7954 | . . . . 5 |
37 | 27, 36 | syl5eq 2510 | . . . 4 |
38 | negeq 9835 | . . . . . 6 | |
39 | negex 9841 | . . . . . 6 | |
40 | 38, 21, 39 | fvmpt 5956 | . . . . 5 |
41 | 18, 40 | syl 16 | . . . 4 |
42 | 37, 41 | eqtr2d 2499 | . . 3 |
43 | 42 | negeqd 9837 | . 2 |
44 | 20, 43 | eqtr3d 2500 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
C_ wss 3475 c0 3784 class class class wbr 4452
e. cmpt 4510 Or wor 4804 `' ccnv 5003
" cima 5007 ` cfv 5593 Isom wiso 5594
sup csup 7920
cr 9512 clt 9649 cle 9650 -u cneg 9829 |
This theorem is referenced by: infmrcl 10547 supminf 11198 mbfinf 22072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 |
Copyright terms: Public domain | W3C validator |