Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infmrcl | Unicode version |
Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.) |
Ref | Expression |
---|---|
infmrcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infmsup 10546 | . 2 | |
2 | n0 3794 | . . . . . 6 | |
3 | ssel 3497 | . . . . . . . . . . 11 | |
4 | renegcl 9905 | . . . . . . . . . . 11 | |
5 | 3, 4 | syl6 33 | . . . . . . . . . 10 |
6 | ssel2 3498 | . . . . . . . . . . . . . 14 | |
7 | 6 | recnd 9643 | . . . . . . . . . . . . 13 |
8 | 7 | negnegd 9945 | . . . . . . . . . . . 12 |
9 | simpr 461 | . . . . . . . . . . . 12 | |
10 | 8, 9 | eqeltrd 2545 | . . . . . . . . . . 11 |
11 | 10 | ex 434 | . . . . . . . . . 10 |
12 | 5, 11 | jcad 533 | . . . . . . . . 9 |
13 | negeq 9835 | . . . . . . . . . . . 12 | |
14 | 13 | eleq1d 2526 | . . . . . . . . . . 11 |
15 | 14 | elrab 3257 | . . . . . . . . . 10 |
16 | ne0i 3790 | . . . . . . . . . 10 | |
17 | 15, 16 | sylbir 213 | . . . . . . . . 9 |
18 | 12, 17 | syl6 33 | . . . . . . . 8 |
19 | 18 | exlimdv 1724 | . . . . . . 7 |
20 | 19 | imp 429 | . . . . . 6 |
21 | 2, 20 | sylan2b 475 | . . . . 5 |
22 | 21 | 3adant3 1016 | . . . 4 |
23 | renegcl 9905 | . . . . . . 7 | |
24 | negeq 9835 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2526 | . . . . . . . . . . 11 |
26 | 25 | elrab 3257 | . . . . . . . . . 10 |
27 | breq2 4456 | . . . . . . . . . . . . . . 15 | |
28 | 27 | rspcva 3208 | . . . . . . . . . . . . . 14 |
29 | 28 | adantll 713 | . . . . . . . . . . . . 13 |
30 | 29 | adantll 713 | . . . . . . . . . . . 12 |
31 | lenegcon2 10082 | . . . . . . . . . . . . . 14 | |
32 | 31 | adantrr 716 | . . . . . . . . . . . . 13 |
33 | 32 | adantr 465 | . . . . . . . . . . . 12 |
34 | 30, 33 | mpbid 210 | . . . . . . . . . . 11 |
35 | 34 | exp31 604 | . . . . . . . . . 10 |
36 | 26, 35 | syl5bi 217 | . . . . . . . . 9 |
37 | 36 | com23 78 | . . . . . . . 8 |
38 | 37 | ralrimdv 2873 | . . . . . . 7 |
39 | breq2 4456 | . . . . . . . . 9 | |
40 | 39 | ralbidv 2896 | . . . . . . . 8 |
41 | 40 | rspcev 3210 | . . . . . . 7 |
42 | 23, 38, 41 | syl6an 545 | . . . . . 6 |
43 | 42 | rexlimiv 2943 | . . . . 5 |
44 | 43 | 3ad2ant3 1019 | . . . 4 |
45 | ssrab2 3584 | . . . . 5 | |
46 | suprcl 10528 | . . . . 5 | |
47 | 45, 46 | mp3an1 1311 | . . . 4 |
48 | 22, 44, 47 | syl2anc 661 | . . 3 |
49 | 48 | renegcld 10011 | . 2 |
50 | 1, 49 | eqeltrd 2545 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
C_ wss 3475 c0 3784 class class class wbr 4452
`' ccnv 5003 sup csup 7920 cr 9512 clt 9649 cle 9650 -u cneg 9829 |
This theorem is referenced by: infmrgelb 10548 infmrlb 10549 supminf 11198 infmxrre 11556 minveclem4c 21840 minveclem3b 21843 minveclem6 21849 pilem2 22847 pilem3 22848 pntlem3 23794 minvecolem2 25791 minvecolem3 25792 minvecolem4c 25795 minvecolem5 25797 minvecolem6 25798 heicant 30049 pellfundre 30817 infrglb 31584 climinf 31612 stirlinglem13 31868 taupi 37698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 |
Copyright terms: Public domain | W3C validator |