Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isotr | Unicode version |
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
isotr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . 4 | |
2 | simpl 457 | . . . 4 | |
3 | f1oco 5843 | . . . 4 | |
4 | 1, 2, 3 | syl2anr 478 | . . 3 |
5 | f1of 5821 | . . . . . . . . . . . 12 | |
6 | 5 | ad2antrr 725 | . . . . . . . . . . 11 |
7 | simprl 756 | . . . . . . . . . . 11 | |
8 | 6, 7 | ffvelrnd 6032 | . . . . . . . . . 10 |
9 | simprr 757 | . . . . . . . . . . 11 | |
10 | 6, 9 | ffvelrnd 6032 | . . . . . . . . . 10 |
11 | simplrr 762 | . . . . . . . . . 10 | |
12 | breq1 4455 | . . . . . . . . . . . 12 | |
13 | fveq2 5871 | . . . . . . . . . . . . 13 | |
14 | 13 | breq1d 4462 | . . . . . . . . . . . 12 |
15 | 12, 14 | bibi12d 321 | . . . . . . . . . . 11 |
16 | breq2 4456 | . . . . . . . . . . . 12 | |
17 | fveq2 5871 | . . . . . . . . . . . . 13 | |
18 | 17 | breq2d 4464 | . . . . . . . . . . . 12 |
19 | 16, 18 | bibi12d 321 | . . . . . . . . . . 11 |
20 | 15, 19 | rspc2va 3220 | . . . . . . . . . 10 |
21 | 8, 10, 11, 20 | syl21anc 1227 | . . . . . . . . 9 |
22 | fvco3 5950 | . . . . . . . . . . 11 | |
23 | 6, 7, 22 | syl2anc 661 | . . . . . . . . . 10 |
24 | fvco3 5950 | . . . . . . . . . . 11 | |
25 | 6, 9, 24 | syl2anc 661 | . . . . . . . . . 10 |
26 | 23, 25 | breq12d 4465 | . . . . . . . . 9 |
27 | 21, 26 | bitr4d 256 | . . . . . . . 8 |
28 | 27 | bibi2d 318 | . . . . . . 7 |
29 | 28 | 2ralbidva 2899 | . . . . . 6 |
30 | 29 | biimpd 207 | . . . . 5 |
31 | 30 | impancom 440 | . . . 4 |
32 | 31 | imp 429 | . . 3 |
33 | 4, 32 | jca 532 | . 2 |
34 | df-isom 5602 | . . 3 | |
35 | df-isom 5602 | . . 3 | |
36 | 34, 35 | anbi12i 697 | . 2 |
37 | df-isom 5602 | . 2 | |
38 | 33, 36, 37 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 class class class wbr 4452
o. ccom 5008 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: weisoeq 6251 oieu 7985 fz1isolem 12510 erdsze2lem2 28648 fzisoeu 31500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |