Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpsnf1o | Unicode version |
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f |
Ref | Expression |
---|---|
ixpsnf1o |
I
, ,, ,, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . 2 | |
2 | snex 4693 | . . . 4 | |
3 | snex 4693 | . . . 4 | |
4 | 2, 3 | xpex 6604 | . . 3 |
5 | 4 | a1i 11 | . 2 |
6 | vex 3112 | . . . . 5 | |
7 | 6 | rnex 6734 | . . . 4 |
8 | 7 | uniex 6596 | . . 3 |
9 | 8 | a1i 11 | . 2 |
10 | sneq 4039 | . . . . . 6 | |
11 | 10 | xpeq1d 5027 | . . . . 5 |
12 | 11 | eqeq2d 2471 | . . . 4 |
13 | 12 | anbi2d 703 | . . 3 |
14 | vex 3112 | . . . . . 6 | |
15 | elixpsn 7528 | . . . . . 6 | |
16 | 14, 15 | ax-mp 5 | . . . . 5 |
17 | 10 | ixpeq1d 7501 | . . . . . 6 |
18 | 17 | eleq2d 2527 | . . . . 5 |
19 | 16, 18 | syl5bbr 259 | . . . 4 |
20 | 19 | anbi1d 704 | . . 3 |
21 | vex 3112 | . . . . . . 7 | |
22 | 14, 21 | xpsn 6073 | . . . . . 6 |
23 | 22 | eqeq2i 2475 | . . . . 5 |
24 | 23 | anbi2i 694 | . . . 4 |
25 | eqid 2457 | . . . . . . . . 9 | |
26 | opeq2 4218 | . . . . . . . . . . . 12 | |
27 | 26 | sneqd 4041 | . . . . . . . . . . 11 |
28 | 27 | eqeq2d 2471 | . . . . . . . . . 10 |
29 | 28 | rspcev 3210 | . . . . . . . . 9 |
30 | 25, 29 | mpan2 671 | . . . . . . . 8 |
31 | 14, 21 | op2nda 5498 | . . . . . . . . 9 |
32 | 31 | eqcomi 2470 | . . . . . . . 8 |
33 | 30, 32 | jctir 538 | . . . . . . 7 |
34 | eqeq1 2461 | . . . . . . . . 9 | |
35 | 34 | rexbidv 2968 | . . . . . . . 8 |
36 | rneq 5233 | . . . . . . . . . 10 | |
37 | 36 | unieqd 4259 | . . . . . . . . 9 |
38 | 37 | eqeq2d 2471 | . . . . . . . 8 |
39 | 35, 38 | anbi12d 710 | . . . . . . 7 |
40 | 33, 39 | syl5ibrcom 222 | . . . . . 6 |
41 | 40 | imp 429 | . . . . 5 |
42 | vex 3112 | . . . . . . . . . . 11 | |
43 | 14, 42 | op2nda 5498 | . . . . . . . . . 10 |
44 | 43 | eqeq2i 2475 | . . . . . . . . 9 |
45 | eqidd 2458 | . . . . . . . . . . 11 | |
46 | 45 | ancli 551 | . . . . . . . . . 10 |
47 | eleq1 2529 | . . . . . . . . . . 11 | |
48 | opeq2 4218 | . . . . . . . . . . . . 13 | |
49 | 48 | sneqd 4041 | . . . . . . . . . . . 12 |
50 | 49 | eqeq2d 2471 | . . . . . . . . . . 11 |
51 | 47, 50 | anbi12d 710 | . . . . . . . . . 10 |
52 | 46, 51 | syl5ibrcom 222 | . . . . . . . . 9 |
53 | 44, 52 | syl5bi 217 | . . . . . . . 8 |
54 | rneq 5233 | . . . . . . . . . . 11 | |
55 | 54 | unieqd 4259 | . . . . . . . . . 10 |
56 | 55 | eqeq2d 2471 | . . . . . . . . 9 |
57 | eqeq1 2461 | . . . . . . . . . 10 | |
58 | 57 | anbi2d 703 | . . . . . . . . 9 |
59 | 56, 58 | imbi12d 320 | . . . . . . . 8 |
60 | 53, 59 | syl5ibrcom 222 | . . . . . . 7 |
61 | 60 | rexlimiv 2943 | . . . . . 6 |
62 | 61 | imp 429 | . . . . 5 |
63 | 41, 62 | impbii 188 | . . . 4 |
64 | 24, 63 | bitri 249 | . . 3 |
65 | 13, 20, 64 | vtoclbg 3168 | . 2 |
66 | 1, 5, 9, 65 | f1od 6525 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 cvv 3109
{ csn 4029 <. cop 4035 U. cuni 4249
e. cmpt 4510 X. cxp 5002 ran crn 5005
-1-1-onto-> wf1o 5592
X_ cixp 7489 |
This theorem is referenced by: mapsnf1o 7530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |