Step |
Hyp |
Ref |
Expression |
1 |
|
2llnj.l |
|- .<_ = ( le ` K ) |
2 |
|
2llnj.j |
|- .\/ = ( join ` K ) |
3 |
|
2llnj.n |
|- N = ( LLines ` K ) |
4 |
|
2llnj.p |
|- P = ( LPlanes ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
7 |
5 2 6 3
|
islln2 |
|- ( K e. HL -> ( X e. N <-> ( X e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) ) ) ) |
8 |
|
simpr |
|- ( ( X e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) ) -> E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) ) |
9 |
7 8
|
syl6bi |
|- ( K e. HL -> ( X e. N -> E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) ) ) |
10 |
5 2 6 3
|
islln2 |
|- ( K e. HL -> ( Y e. N <-> ( Y e. ( Base ` K ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) ) |
11 |
|
simpr |
|- ( ( Y e. ( Base ` K ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) -> E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) |
12 |
10 11
|
syl6bi |
|- ( K e. HL -> ( Y e. N -> E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) |
13 |
9 12
|
anim12d |
|- ( K e. HL -> ( ( X e. N /\ Y e. N ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) ) |
14 |
13
|
imp |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) |
15 |
14
|
3adantr3 |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) |
16 |
15
|
3adant3 |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) ) |
17 |
|
simp2rr |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> X = ( q .\/ r ) ) |
18 |
|
simp3rr |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> Y = ( s .\/ t ) ) |
19 |
17 18
|
oveq12d |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( X .\/ Y ) = ( ( q .\/ r ) .\/ ( s .\/ t ) ) ) |
20 |
|
simp13 |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) |
21 |
|
breq1 |
|- ( X = ( q .\/ r ) -> ( X .<_ W <-> ( q .\/ r ) .<_ W ) ) |
22 |
|
neeq1 |
|- ( X = ( q .\/ r ) -> ( X =/= Y <-> ( q .\/ r ) =/= Y ) ) |
23 |
21 22
|
3anbi13d |
|- ( X = ( q .\/ r ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( q .\/ r ) .<_ W /\ Y .<_ W /\ ( q .\/ r ) =/= Y ) ) ) |
24 |
|
breq1 |
|- ( Y = ( s .\/ t ) -> ( Y .<_ W <-> ( s .\/ t ) .<_ W ) ) |
25 |
|
neeq2 |
|- ( Y = ( s .\/ t ) -> ( ( q .\/ r ) =/= Y <-> ( q .\/ r ) =/= ( s .\/ t ) ) ) |
26 |
24 25
|
3anbi23d |
|- ( Y = ( s .\/ t ) -> ( ( ( q .\/ r ) .<_ W /\ Y .<_ W /\ ( q .\/ r ) =/= Y ) <-> ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) ) ) |
27 |
23 26
|
sylan9bb |
|- ( ( X = ( q .\/ r ) /\ Y = ( s .\/ t ) ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) ) ) |
28 |
17 18 27
|
syl2anc |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) ) ) |
29 |
20 28
|
mpbid |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) ) |
30 |
|
simp11 |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> K e. HL ) |
31 |
|
simp123 |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> W e. P ) |
32 |
|
simp2ll |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> q e. ( Atoms ` K ) ) |
33 |
|
simp2lr |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> r e. ( Atoms ` K ) ) |
34 |
|
simp2rl |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> q =/= r ) |
35 |
|
simp3ll |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> s e. ( Atoms ` K ) ) |
36 |
|
simp3lr |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> t e. ( Atoms ` K ) ) |
37 |
|
simp3rl |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> s =/= t ) |
38 |
1 2 6 3 4
|
2llnjaN |
|- ( ( ( ( K e. HL /\ W e. P ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ q =/= r ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) /\ s =/= t ) ) /\ ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) ) -> ( ( q .\/ r ) .\/ ( s .\/ t ) ) = W ) |
39 |
38
|
ex |
|- ( ( ( K e. HL /\ W e. P ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ q =/= r ) /\ ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) /\ s =/= t ) ) -> ( ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) -> ( ( q .\/ r ) .\/ ( s .\/ t ) ) = W ) ) |
40 |
30 31 32 33 34 35 36 37 39
|
syl233anc |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( ( ( q .\/ r ) .<_ W /\ ( s .\/ t ) .<_ W /\ ( q .\/ r ) =/= ( s .\/ t ) ) -> ( ( q .\/ r ) .\/ ( s .\/ t ) ) = W ) ) |
41 |
29 40
|
mpd |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( ( q .\/ r ) .\/ ( s .\/ t ) ) = W ) |
42 |
19 41
|
eqtrd |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) /\ ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) ) -> ( X .\/ Y ) = W ) |
43 |
42
|
3exp |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) -> ( ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) -> ( X .\/ Y ) = W ) ) ) |
44 |
43
|
3impib |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) -> ( ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( s =/= t /\ Y = ( s .\/ t ) ) ) -> ( X .\/ Y ) = W ) ) |
45 |
44
|
expd |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) -> ( ( s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) -> ( ( s =/= t /\ Y = ( s .\/ t ) ) -> ( X .\/ Y ) = W ) ) ) |
46 |
45
|
rexlimdvv |
|- ( ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) /\ ( q =/= r /\ X = ( q .\/ r ) ) ) -> ( E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) -> ( X .\/ Y ) = W ) ) |
47 |
46
|
3exp |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) ) -> ( ( q =/= r /\ X = ( q .\/ r ) ) -> ( E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) -> ( X .\/ Y ) = W ) ) ) ) |
48 |
47
|
rexlimdvv |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) -> ( E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) -> ( X .\/ Y ) = W ) ) ) |
49 |
48
|
impd |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( q =/= r /\ X = ( q .\/ r ) ) /\ E. s e. ( Atoms ` K ) E. t e. ( Atoms ` K ) ( s =/= t /\ Y = ( s .\/ t ) ) ) -> ( X .\/ Y ) = W ) ) |
50 |
16 49
|
mpd |
|- ( ( K e. HL /\ ( X e. N /\ Y e. N /\ W e. P ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( X .\/ Y ) = W ) |