Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) ) |
2 |
|
4thatlem0.l |
|- .<_ = ( le ` K ) |
3 |
|
4thatlem0.j |
|- .\/ = ( join ` K ) |
4 |
|
4thatlem0.m |
|- ./\ = ( meet ` K ) |
5 |
|
4thatlem0.a |
|- A = ( Atoms ` K ) |
6 |
|
4thatlem0.h |
|- H = ( LHyp ` K ) |
7 |
|
4thatlem0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
4thatlem0.v |
|- V = ( ( P .\/ S ) ./\ W ) |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
1
|
4atexlemkl |
|- ( ph -> K e. Lat ) |
11 |
1
|
4atexlemt |
|- ( ph -> T e. A ) |
12 |
9 5
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
13 |
11 12
|
syl |
|- ( ph -> T e. ( Base ` K ) ) |
14 |
1
|
4atexlemk |
|- ( ph -> K e. HL ) |
15 |
1 2 3 4 5 6 7
|
4atexlemu |
|- ( ph -> U e. A ) |
16 |
1 2 3 4 5 6 7 8
|
4atexlemv |
|- ( ph -> V e. A ) |
17 |
9 3 5
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ V e. A ) -> ( U .\/ V ) e. ( Base ` K ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ph -> ( U .\/ V ) e. ( Base ` K ) ) |
19 |
1 6
|
4atexlemwb |
|- ( ph -> W e. ( Base ` K ) ) |
20 |
1
|
4atexlemkc |
|- ( ph -> K e. CvLat ) |
21 |
1 2 3 4 5 6 7 8
|
4atexlemunv |
|- ( ph -> U =/= V ) |
22 |
1
|
4atexlemutvt |
|- ( ph -> ( U .\/ T ) = ( V .\/ T ) ) |
23 |
5 2 3
|
cvlsupr4 |
|- ( ( K e. CvLat /\ ( U e. A /\ V e. A /\ T e. A ) /\ ( U =/= V /\ ( U .\/ T ) = ( V .\/ T ) ) ) -> T .<_ ( U .\/ V ) ) |
24 |
20 15 16 11 21 22 23
|
syl132anc |
|- ( ph -> T .<_ ( U .\/ V ) ) |
25 |
1
|
4atexlemp |
|- ( ph -> P e. A ) |
26 |
1
|
4atexlemq |
|- ( ph -> Q e. A ) |
27 |
9 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
28 |
14 25 26 27
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
29 |
9 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
30 |
10 28 19 29
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
31 |
7 30
|
eqbrtrid |
|- ( ph -> U .<_ W ) |
32 |
1 3 5
|
4atexlempsb |
|- ( ph -> ( P .\/ S ) e. ( Base ` K ) ) |
33 |
9 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
34 |
10 32 19 33
|
syl3anc |
|- ( ph -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
35 |
8 34
|
eqbrtrid |
|- ( ph -> V .<_ W ) |
36 |
9 5
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
37 |
15 36
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
38 |
9 5
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
39 |
16 38
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
40 |
9 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ V e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( U .<_ W /\ V .<_ W ) <-> ( U .\/ V ) .<_ W ) ) |
41 |
10 37 39 19 40
|
syl13anc |
|- ( ph -> ( ( U .<_ W /\ V .<_ W ) <-> ( U .\/ V ) .<_ W ) ) |
42 |
31 35 41
|
mpbi2and |
|- ( ph -> ( U .\/ V ) .<_ W ) |
43 |
9 2 10 13 18 19 24 42
|
lattrd |
|- ( ph -> T .<_ W ) |