Metamath Proof Explorer


Theorem 4atexlemtlw

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
4thatlem0.l = ( le ‘ 𝐾 )
4thatlem0.j = ( join ‘ 𝐾 )
4thatlem0.m = ( meet ‘ 𝐾 )
4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
4thatlem0.v 𝑉 = ( ( 𝑃 𝑆 ) 𝑊 )
Assertion 4atexlemtlw ( 𝜑𝑇 𝑊 )

Proof

Step Hyp Ref Expression
1 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
2 4thatlem0.l = ( le ‘ 𝐾 )
3 4thatlem0.j = ( join ‘ 𝐾 )
4 4thatlem0.m = ( meet ‘ 𝐾 )
5 4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
6 4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
7 4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 4thatlem0.v 𝑉 = ( ( 𝑃 𝑆 ) 𝑊 )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 1 4atexlemkl ( 𝜑𝐾 ∈ Lat )
11 1 4atexlemt ( 𝜑𝑇𝐴 )
12 9 5 atbase ( 𝑇𝐴𝑇 ∈ ( Base ‘ 𝐾 ) )
13 11 12 syl ( 𝜑𝑇 ∈ ( Base ‘ 𝐾 ) )
14 1 4atexlemk ( 𝜑𝐾 ∈ HL )
15 1 2 3 4 5 6 7 4atexlemu ( 𝜑𝑈𝐴 )
16 1 2 3 4 5 6 7 8 4atexlemv ( 𝜑𝑉𝐴 )
17 9 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴 ) → ( 𝑈 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
18 14 15 16 17 syl3anc ( 𝜑 → ( 𝑈 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
19 1 6 4atexlemwb ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
20 1 4atexlemkc ( 𝜑𝐾 ∈ CvLat )
21 1 2 3 4 5 6 7 8 4atexlemunv ( 𝜑𝑈𝑉 )
22 1 4atexlemutvt ( 𝜑 → ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) )
23 5 2 3 cvlsupr4 ( ( 𝐾 ∈ CvLat ∧ ( 𝑈𝐴𝑉𝐴𝑇𝐴 ) ∧ ( 𝑈𝑉 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) → 𝑇 ( 𝑈 𝑉 ) )
24 20 15 16 11 21 22 23 syl132anc ( 𝜑𝑇 ( 𝑈 𝑉 ) )
25 1 4atexlemp ( 𝜑𝑃𝐴 )
26 1 4atexlemq ( 𝜑𝑄𝐴 )
27 9 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
28 14 25 26 27 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
29 9 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
30 10 28 19 29 syl3anc ( 𝜑 → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
31 7 30 eqbrtrid ( 𝜑𝑈 𝑊 )
32 1 3 5 4atexlempsb ( 𝜑 → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
33 9 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
34 10 32 19 33 syl3anc ( 𝜑 → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
35 8 34 eqbrtrid ( 𝜑𝑉 𝑊 )
36 9 5 atbase ( 𝑈𝐴𝑈 ∈ ( Base ‘ 𝐾 ) )
37 15 36 syl ( 𝜑𝑈 ∈ ( Base ‘ 𝐾 ) )
38 9 5 atbase ( 𝑉𝐴𝑉 ∈ ( Base ‘ 𝐾 ) )
39 16 38 syl ( 𝜑𝑉 ∈ ( Base ‘ 𝐾 ) )
40 9 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑈 𝑊𝑉 𝑊 ) ↔ ( 𝑈 𝑉 ) 𝑊 ) )
41 10 37 39 19 40 syl13anc ( 𝜑 → ( ( 𝑈 𝑊𝑉 𝑊 ) ↔ ( 𝑈 𝑉 ) 𝑊 ) )
42 31 35 41 mpbi2and ( 𝜑 → ( 𝑈 𝑉 ) 𝑊 )
43 9 2 10 13 18 19 24 42 lattrd ( 𝜑𝑇 𝑊 )