Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( a = b -> ( a +s 0s ) = ( b +s 0s ) ) |
2 |
|
id |
|- ( a = b -> a = b ) |
3 |
1 2
|
eqeq12d |
|- ( a = b -> ( ( a +s 0s ) = a <-> ( b +s 0s ) = b ) ) |
4 |
|
oveq1 |
|- ( a = A -> ( a +s 0s ) = ( A +s 0s ) ) |
5 |
|
id |
|- ( a = A -> a = A ) |
6 |
4 5
|
eqeq12d |
|- ( a = A -> ( ( a +s 0s ) = a <-> ( A +s 0s ) = A ) ) |
7 |
|
0sno |
|- 0s e. No |
8 |
|
addsval |
|- ( ( a e. No /\ 0s e. No ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) |
9 |
7 8
|
mpan2 |
|- ( a e. No -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) |
10 |
9
|
adantr |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) |
11 |
|
elun1 |
|- ( y e. ( _L ` a ) -> y e. ( ( _L ` a ) u. ( _R ` a ) ) ) |
12 |
|
simpr |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) |
13 |
|
oveq1 |
|- ( b = y -> ( b +s 0s ) = ( y +s 0s ) ) |
14 |
|
id |
|- ( b = y -> b = y ) |
15 |
13 14
|
eqeq12d |
|- ( b = y -> ( ( b +s 0s ) = b <-> ( y +s 0s ) = y ) ) |
16 |
15
|
rspcva |
|- ( ( y e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( y +s 0s ) = y ) |
17 |
11 12 16
|
syl2anr |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( y +s 0s ) = y ) |
18 |
17
|
eqeq2d |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> x = y ) ) |
19 |
|
equcom |
|- ( x = y <-> y = x ) |
20 |
18 19
|
bitrdi |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> y = x ) ) |
21 |
20
|
rexbidva |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> E. y e. ( _L ` a ) y = x ) ) |
22 |
|
risset |
|- ( x e. ( _L ` a ) <-> E. y e. ( _L ` a ) y = x ) |
23 |
21 22
|
bitr4di |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> x e. ( _L ` a ) ) ) |
24 |
23
|
abbi1dv |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } = ( _L ` a ) ) |
25 |
|
rex0 |
|- -. E. y e. (/) z = ( a +s y ) |
26 |
|
left0s |
|- ( _L ` 0s ) = (/) |
27 |
26
|
rexeqi |
|- ( E. y e. ( _L ` 0s ) z = ( a +s y ) <-> E. y e. (/) z = ( a +s y ) ) |
28 |
25 27
|
mtbir |
|- -. E. y e. ( _L ` 0s ) z = ( a +s y ) |
29 |
28
|
abf |
|- { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) |
30 |
29
|
a1i |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) ) |
31 |
24 30
|
uneq12d |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( ( _L ` a ) u. (/) ) ) |
32 |
|
un0 |
|- ( ( _L ` a ) u. (/) ) = ( _L ` a ) |
33 |
31 32
|
eqtrdi |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( _L ` a ) ) |
34 |
|
elun2 |
|- ( w e. ( _R ` a ) -> w e. ( ( _L ` a ) u. ( _R ` a ) ) ) |
35 |
|
oveq1 |
|- ( b = w -> ( b +s 0s ) = ( w +s 0s ) ) |
36 |
|
id |
|- ( b = w -> b = w ) |
37 |
35 36
|
eqeq12d |
|- ( b = w -> ( ( b +s 0s ) = b <-> ( w +s 0s ) = w ) ) |
38 |
37
|
rspcva |
|- ( ( w e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( w +s 0s ) = w ) |
39 |
34 12 38
|
syl2anr |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( w +s 0s ) = w ) |
40 |
39
|
eqeq2d |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> x = w ) ) |
41 |
|
equcom |
|- ( x = w <-> w = x ) |
42 |
40 41
|
bitrdi |
|- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> w = x ) ) |
43 |
42
|
rexbidva |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> E. w e. ( _R ` a ) w = x ) ) |
44 |
|
risset |
|- ( x e. ( _R ` a ) <-> E. w e. ( _R ` a ) w = x ) |
45 |
43 44
|
bitr4di |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> x e. ( _R ` a ) ) ) |
46 |
45
|
abbi1dv |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } = ( _R ` a ) ) |
47 |
|
rex0 |
|- -. E. w e. (/) z = ( a +s w ) |
48 |
|
right0s |
|- ( _R ` 0s ) = (/) |
49 |
48
|
rexeqi |
|- ( E. w e. ( _R ` 0s ) z = ( a +s w ) <-> E. w e. (/) z = ( a +s w ) ) |
50 |
47 49
|
mtbir |
|- -. E. w e. ( _R ` 0s ) z = ( a +s w ) |
51 |
50
|
abf |
|- { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) |
52 |
51
|
a1i |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) ) |
53 |
46 52
|
uneq12d |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( ( _R ` a ) u. (/) ) ) |
54 |
|
un0 |
|- ( ( _R ` a ) u. (/) ) = ( _R ` a ) |
55 |
53 54
|
eqtrdi |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( _R ` a ) ) |
56 |
33 55
|
oveq12d |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) = ( ( _L ` a ) |s ( _R ` a ) ) ) |
57 |
|
lrcut |
|- ( a e. No -> ( ( _L ` a ) |s ( _R ` a ) ) = a ) |
58 |
57
|
adantr |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( _L ` a ) |s ( _R ` a ) ) = a ) |
59 |
10 56 58
|
3eqtrd |
|- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = a ) |
60 |
59
|
ex |
|- ( a e. No -> ( A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b -> ( a +s 0s ) = a ) ) |
61 |
3 6 60
|
noinds |
|- ( A e. No -> ( A +s 0s ) = A ) |