| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 2 |
1
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 3 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 4 |
3
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
| 5 |
4
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
| 6 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
| 7 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 8 |
7
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
| 9 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
| 10 |
2
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 11 |
|
rpssre |
|- RR+ C_ RR |
| 12 |
11
|
a1i |
|- ( T. -> RR+ C_ RR ) |
| 13 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 14 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 15 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
| 16 |
|
iooretop |
|- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
| 17 |
15 16
|
eqeltrri |
|- RR+ e. ( topGen ` ran (,) ) |
| 18 |
17
|
a1i |
|- ( T. -> RR+ e. ( topGen ` ran (,) ) ) |
| 19 |
2 8 9 10 12 13 14 18
|
dvmptres |
|- ( T. -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 20 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 22 |
|
peano2rem |
|- ( ( log ` x ) e. RR -> ( ( log ` x ) - 1 ) e. RR ) |
| 23 |
21 22
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. CC ) |
| 25 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
| 26 |
25
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 27 |
26
|
rpcnd |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
| 28 |
21
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 29 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
| 30 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
| 31 |
29 30
|
mp1i |
|- ( T. -> ( log |` RR+ ) : RR+ --> RR ) |
| 32 |
31
|
feqmptd |
|- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 33 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
| 34 |
33
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 35 |
32 34
|
eqtrdi |
|- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 36 |
35
|
oveq2d |
|- ( T. -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 37 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| 38 |
36 37
|
eqtr3di |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 39 |
|
0cnd |
|- ( ( T. /\ x e. RR+ ) -> 0 e. CC ) |
| 40 |
|
1cnd |
|- ( ( T. /\ x e. RR ) -> 1 e. CC ) |
| 41 |
|
0cnd |
|- ( ( T. /\ x e. RR ) -> 0 e. CC ) |
| 42 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 43 |
2 42
|
dvmptc |
|- ( T. -> ( RR _D ( x e. RR |-> 1 ) ) = ( x e. RR |-> 0 ) ) |
| 44 |
2 40 41 43 12 13 14 18
|
dvmptres |
|- ( T. -> ( RR _D ( x e. RR+ |-> 1 ) ) = ( x e. RR+ |-> 0 ) ) |
| 45 |
2 28 27 38 6 39 44
|
dvmptsub |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) ) |
| 46 |
27
|
subid1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) - 0 ) = ( 1 / x ) ) |
| 47 |
46
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 48 |
45 47
|
eqtrd |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 49 |
2 5 6 19 24 27 48
|
dvmptmul |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) ) |
| 50 |
24
|
mullidd |
|- ( ( T. /\ x e. RR+ ) -> ( 1 x. ( ( log ` x ) - 1 ) ) = ( ( log ` x ) - 1 ) ) |
| 51 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
| 52 |
51
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x =/= 0 ) |
| 53 |
5 52
|
recid2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) x. x ) = 1 ) |
| 54 |
50 53
|
oveq12d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( ( ( log ` x ) - 1 ) + 1 ) ) |
| 55 |
|
ax-1cn |
|- 1 e. CC |
| 56 |
|
npcan |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
| 57 |
28 55 56
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
| 58 |
54 57
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( log ` x ) ) |
| 59 |
58
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 60 |
49 59
|
eqtrd |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 61 |
60
|
mptru |
|- ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) |