| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ... N ) e. Fin ) |
| 2 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
| 3 |
2
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> x e. CC ) |
| 4 |
|
rpdivcl |
|- ( ( A e. RR+ /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
| 5 |
4
|
adantlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
| 6 |
5
|
relogcld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. RR ) |
| 7 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 8 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ k e. NN0 ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
| 10 |
7
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 11 |
10
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
| 12 |
9 11
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. CC ) |
| 14 |
1 3 13
|
fsummulc2 |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
| 15 |
|
simplr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. NN0 ) |
| 16 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 17 |
15 16
|
eleqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ( ZZ>= ` 0 ) ) |
| 18 |
3
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> x e. CC ) |
| 19 |
18 13
|
mulcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 20 |
|
oveq2 |
|- ( k = 0 -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ 0 ) ) |
| 21 |
|
fveq2 |
|- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
| 22 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 23 |
21 22
|
eqtrdi |
|- ( k = 0 -> ( ! ` k ) = 1 ) |
| 24 |
20 23
|
oveq12d |
|- ( k = 0 -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) |
| 25 |
24
|
oveq2d |
|- ( k = 0 -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
| 26 |
17 19 25
|
fsum1p |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) |
| 27 |
6
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
| 28 |
27
|
exp0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ 0 ) = 1 ) |
| 29 |
28
|
oveq1d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = ( 1 / 1 ) ) |
| 30 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 31 |
29 30
|
eqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = 1 ) |
| 32 |
31
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( x x. 1 ) ) |
| 33 |
3
|
mulridd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. 1 ) = x ) |
| 34 |
32 33
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = x ) |
| 35 |
|
1zzd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. ZZ ) |
| 36 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 37 |
36
|
ad2antlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ZZ ) |
| 38 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 39 |
38
|
sseli |
|- ( k e. ( 1 ... N ) -> k e. ( 0 ... N ) ) |
| 40 |
39 19
|
sylan2 |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 1 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 41 |
|
oveq2 |
|- ( k = ( j + 1 ) -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
| 42 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( ! ` k ) = ( ! ` ( j + 1 ) ) ) |
| 43 |
41 42
|
oveq12d |
|- ( k = ( j + 1 ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 44 |
43
|
oveq2d |
|- ( k = ( j + 1 ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 45 |
35 35 37 40 44
|
fsumshftm |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 46 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 47 |
46
|
oveq1i |
|- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
| 48 |
47
|
sumeq1i |
|- sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) |
| 49 |
48
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
| 50 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 51 |
50
|
oveq1i |
|- ( ( 1 - 1 ) ..^ N ) = ( 0 ..^ N ) |
| 52 |
|
fzoval |
|- ( N e. ZZ -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
| 53 |
37 52
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
| 54 |
51 53
|
eqtr3id |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
| 55 |
54
|
sumeq1d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 56 |
45 49 55
|
3eqtr4d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 57 |
34 56
|
oveq12d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
| 58 |
14 26 57
|
3eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
| 59 |
58
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) ) |
| 61 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 62 |
61
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR e. { RR , CC } ) |
| 63 |
|
1cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. CC ) |
| 64 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 65 |
64
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> x e. CC ) |
| 66 |
|
1cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> 1 e. CC ) |
| 67 |
62
|
dvmptid |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 68 |
|
rpssre |
|- RR+ C_ RR |
| 69 |
68
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ C_ RR ) |
| 70 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 71 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 72 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
| 73 |
|
iooretop |
|- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
| 74 |
72 73
|
eqeltrri |
|- RR+ e. ( topGen ` ran (,) ) |
| 75 |
74
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ e. ( topGen ` ran (,) ) ) |
| 76 |
62 65 66 67 69 70 71 75
|
dvmptres |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 77 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 78 |
77
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) e. Fin ) |
| 79 |
3
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. CC ) |
| 80 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ N ) -> j e. NN0 ) |
| 81 |
|
peano2nn0 |
|- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
| 82 |
80 81
|
syl |
|- ( j e. ( 0 ..^ N ) -> ( j + 1 ) e. NN0 ) |
| 83 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ ( j + 1 ) e. NN0 ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
| 84 |
6 82 83
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
| 85 |
82
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
| 86 |
85
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
| 87 |
84 86
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. RR ) |
| 88 |
87
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 89 |
79 88
|
mulcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 90 |
78 89
|
fsumcl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 91 |
6 15
|
reexpcld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ N ) e. RR ) |
| 92 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
| 93 |
92
|
ad2antlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ! ` N ) e. NN ) |
| 94 |
91 93
|
nndivred |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. RR ) |
| 95 |
94
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) |
| 96 |
|
ax-1cn |
|- 1 e. CC |
| 97 |
|
subcl |
|- ( ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
| 98 |
95 96 97
|
sylancl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
| 99 |
77
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( 0 ..^ N ) e. Fin ) |
| 100 |
89
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 101 |
100
|
3impa |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 102 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ j e. NN0 ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
| 103 |
6 80 102
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
| 104 |
80
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
| 105 |
104
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
| 106 |
103 105
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. RR ) |
| 107 |
106
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
| 108 |
88 107
|
subcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 109 |
108
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 110 |
109
|
3impa |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 111 |
61
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR e. { RR , CC } ) |
| 112 |
2
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. CC ) |
| 113 |
|
1cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 1 e. CC ) |
| 114 |
76
|
adantr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 115 |
88
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 116 |
|
negex |
|- -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V |
| 117 |
116
|
a1i |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V ) |
| 118 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 119 |
118
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> CC e. { RR , CC } ) |
| 120 |
27
|
adantlr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
| 121 |
|
negex |
|- -u ( 1 / x ) e. _V |
| 122 |
121
|
a1i |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
| 123 |
|
id |
|- ( y e. CC -> y e. CC ) |
| 124 |
80
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
| 125 |
124 81
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
| 126 |
|
expcl |
|- ( ( y e. CC /\ ( j + 1 ) e. NN0 ) -> ( y ^ ( j + 1 ) ) e. CC ) |
| 127 |
123 125 126
|
syl2anr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( j + 1 ) ) e. CC ) |
| 128 |
125
|
faccld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
| 129 |
128
|
nncnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. CC ) |
| 130 |
129
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) e. CC ) |
| 131 |
128
|
nnne0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
| 132 |
131
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
| 133 |
127 130 132
|
divcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 134 |
|
expcl |
|- ( ( y e. CC /\ j e. NN0 ) -> ( y ^ j ) e. CC ) |
| 135 |
123 124 134
|
syl2anr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ j ) e. CC ) |
| 136 |
124
|
faccld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
| 137 |
136
|
nncnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. CC ) |
| 138 |
137
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. CC ) |
| 139 |
124
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. NN0 ) |
| 140 |
139
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. NN ) |
| 141 |
140
|
nnne0d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) =/= 0 ) |
| 142 |
135 138 141
|
divcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ j ) / ( ! ` j ) ) e. CC ) |
| 143 |
|
simplll |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> A e. RR+ ) |
| 144 |
|
simpr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. RR+ ) |
| 145 |
143 144
|
relogdivd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) = ( ( log ` A ) - ( log ` x ) ) ) |
| 146 |
145
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( log ` ( A / x ) ) ) = ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) |
| 147 |
146
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) ) |
| 148 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 149 |
148
|
ad2antrr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. RR ) |
| 150 |
149
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. CC ) |
| 151 |
150
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` A ) e. CC ) |
| 152 |
|
0cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 0 e. CC ) |
| 153 |
150
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( log ` A ) e. CC ) |
| 154 |
|
0cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> 0 e. CC ) |
| 155 |
111 150
|
dvmptc |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR |-> ( log ` A ) ) ) = ( x e. RR |-> 0 ) ) |
| 156 |
68
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ C_ RR ) |
| 157 |
74
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ e. ( topGen ` ran (,) ) ) |
| 158 |
111 153 154 155 156 70 71 157
|
dvmptres |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` A ) ) ) = ( x e. RR+ |-> 0 ) ) |
| 159 |
144
|
relogcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 160 |
159
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 161 |
144
|
rpreccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 162 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
| 163 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
| 164 |
162 163
|
mp1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
| 165 |
164
|
feqmptd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 166 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
| 167 |
166
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 168 |
165 167
|
eqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 169 |
168
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 170 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| 171 |
169 170
|
eqtr3di |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 172 |
111 151 152 158 160 161 171
|
dvmptsub |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
| 173 |
147 172
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
| 174 |
|
df-neg |
|- -u ( 1 / x ) = ( 0 - ( 1 / x ) ) |
| 175 |
174
|
mpteq2i |
|- ( x e. RR+ |-> -u ( 1 / x ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) |
| 176 |
173 175
|
eqtr4di |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
| 177 |
|
ovexd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) e. _V ) |
| 178 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 179 |
124 178
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN ) |
| 180 |
|
dvexp |
|- ( ( j + 1 ) e. NN -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
| 181 |
179 180
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
| 182 |
119 127 177 181 129 131
|
dvmptdivc |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 183 |
124
|
nn0cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. CC ) |
| 184 |
183
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. CC ) |
| 185 |
|
pncan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
| 186 |
184 96 185
|
sylancl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
| 187 |
186
|
oveq2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( ( j + 1 ) - 1 ) ) = ( y ^ j ) ) |
| 188 |
187
|
oveq2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) = ( ( j + 1 ) x. ( y ^ j ) ) ) |
| 189 |
|
facp1 |
|- ( j e. NN0 -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
| 190 |
139 189
|
syl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
| 191 |
|
peano2cn |
|- ( j e. CC -> ( j + 1 ) e. CC ) |
| 192 |
184 191
|
syl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) e. CC ) |
| 193 |
138 192
|
mulcomd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ! ` j ) x. ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
| 194 |
190 193
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
| 195 |
188 194
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) ) |
| 196 |
179
|
nnne0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) =/= 0 ) |
| 197 |
196
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) =/= 0 ) |
| 198 |
135 138 192 141 197
|
divcan5d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
| 199 |
195 198
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
| 200 |
199
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
| 201 |
182 200
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
| 202 |
|
oveq1 |
|- ( y = ( log ` ( A / x ) ) -> ( y ^ ( j + 1 ) ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
| 203 |
202
|
oveq1d |
|- ( y = ( log ` ( A / x ) ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 204 |
|
oveq1 |
|- ( y = ( log ` ( A / x ) ) -> ( y ^ j ) = ( ( log ` ( A / x ) ) ^ j ) ) |
| 205 |
204
|
oveq1d |
|- ( y = ( log ` ( A / x ) ) -> ( ( y ^ j ) / ( ! ` j ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 206 |
111 119 120 122 133 142 176 201 203 205
|
dvmptco |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) ) |
| 207 |
107
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
| 208 |
161
|
rpcnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
| 209 |
207 208
|
mulneg2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 210 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
| 211 |
210
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x =/= 0 ) |
| 212 |
207 112 211
|
divrecd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 213 |
212
|
negeqd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 214 |
209 213
|
eqtr4d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) |
| 215 |
214
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
| 216 |
206 215
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
| 217 |
111 112 113 114 115 117 216
|
dvmptmul |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) ) |
| 218 |
88
|
mullidd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 219 |
|
simplr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. RR+ ) |
| 220 |
106 219
|
rerpdivcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. RR ) |
| 221 |
220
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. CC ) |
| 222 |
221 79
|
mulneg1d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) |
| 223 |
211
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x =/= 0 ) |
| 224 |
107 79 223
|
divcan1d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 225 |
224
|
negeqd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 226 |
222 225
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 227 |
218 226
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 228 |
88 107
|
negsubd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 229 |
227 228
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 230 |
229
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 231 |
230
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 232 |
217 231
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 233 |
70 71 62 75 99 101 110 232
|
dvmptfsum |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 234 |
|
oveq2 |
|- ( k = j -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ j ) ) |
| 235 |
|
fveq2 |
|- ( k = j -> ( ! ` k ) = ( ! ` j ) ) |
| 236 |
234 235
|
oveq12d |
|- ( k = j -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 237 |
|
oveq2 |
|- ( k = N -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ N ) ) |
| 238 |
|
fveq2 |
|- ( k = N -> ( ! ` k ) = ( ! ` N ) ) |
| 239 |
237 238
|
oveq12d |
|- ( k = N -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
| 240 |
236 43 24 239 17 13
|
telfsumo2 |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
| 241 |
31
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
| 242 |
240 241
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
| 243 |
242
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
| 244 |
233 243
|
eqtrd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
| 245 |
62 3 63 76 90 98 244
|
dvmptadd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) = ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) ) |
| 246 |
|
pncan3 |
|- ( ( 1 e. CC /\ ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
| 247 |
96 95 246
|
sylancr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
| 248 |
247
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |
| 249 |
60 245 248
|
3eqtrd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |