| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | simpll |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | simprl |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> M : NN --> ( Clsd ` J ) ) | 
						
							| 4 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( Met ` X ) ) | 
						
							| 6 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 7 | 1 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 9 |  | topontop |  |-  ( J e. ( TopOn ` X ) -> J e. Top ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. Top ) | 
						
							| 11 |  | simprr |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M = X ) | 
						
							| 12 |  | toponmax |  |-  ( J e. ( TopOn ` X ) -> X e. J ) | 
						
							| 13 | 8 12 | syl |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X e. J ) | 
						
							| 14 | 11 13 | eqeltrd |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M e. J ) | 
						
							| 15 |  | isopn3i |  |-  ( ( J e. Top /\ U. ran M e. J ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) | 
						
							| 16 | 10 14 15 | syl2anc |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) | 
						
							| 17 | 16 11 | eqtrd |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = X ) | 
						
							| 18 |  | simplr |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X =/= (/) ) | 
						
							| 19 | 17 18 | eqnetrd |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) =/= (/) ) | 
						
							| 20 | 1 | bcth |  |-  ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) | 
						
							| 21 | 2 3 19 20 | syl3anc |  |-  ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |