| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | simpll |  |-  ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | eleq1w |  |-  ( x = y -> ( x e. X <-> y e. X ) ) | 
						
							| 4 |  | eleq1w |  |-  ( r = m -> ( r e. RR+ <-> m e. RR+ ) ) | 
						
							| 5 | 3 4 | bi2anan9 |  |-  ( ( x = y /\ r = m ) -> ( ( x e. X /\ r e. RR+ ) <-> ( y e. X /\ m e. RR+ ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( x = y /\ r = m ) -> r = m ) | 
						
							| 7 | 6 | breq1d |  |-  ( ( x = y /\ r = m ) -> ( r < ( 1 / k ) <-> m < ( 1 / k ) ) ) | 
						
							| 8 |  | oveq12 |  |-  ( ( x = y /\ r = m ) -> ( x ( ball ` D ) r ) = ( y ( ball ` D ) m ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( x = y /\ r = m ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) = ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) ) | 
						
							| 10 | 9 | sseq1d |  |-  ( ( x = y /\ r = m ) -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) | 
						
							| 11 | 7 10 | anbi12d |  |-  ( ( x = y /\ r = m ) -> ( ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) | 
						
							| 12 | 5 11 | anbi12d |  |-  ( ( x = y /\ r = m ) -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) ) | 
						
							| 13 | 12 | cbvopabv |  |-  { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } | 
						
							| 14 |  | oveq2 |  |-  ( k = n -> ( 1 / k ) = ( 1 / n ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( k = n -> ( m < ( 1 / k ) <-> m < ( 1 / n ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( k = n -> ( M ` k ) = ( M ` n ) ) | 
						
							| 17 | 16 | difeq2d |  |-  ( k = n -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) | 
						
							| 18 | 17 | sseq2d |  |-  ( k = n -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d |  |-  ( k = n -> ( ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( k = n -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) ) | 
						
							| 21 | 20 | opabbidv |  |-  ( k = n -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) | 
						
							| 22 | 13 21 | eqtrid |  |-  ( k = n -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) | 
						
							| 23 |  | fveq2 |  |-  ( z = g -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` g ) ) | 
						
							| 24 | 23 | difeq1d |  |-  ( z = g -> ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) = ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) | 
						
							| 25 | 24 | sseq2d |  |-  ( z = g -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) | 
						
							| 26 | 25 | anbi2d |  |-  ( z = g -> ( ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) | 
						
							| 27 | 26 | anbi2d |  |-  ( z = g -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) ) | 
						
							| 28 | 27 | opabbidv |  |-  ( z = g -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) | 
						
							| 29 | 22 28 | cbvmpov |  |-  ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) = ( n e. NN , g e. ( X X. RR+ ) |-> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) | 
						
							| 30 |  | simplr |  |-  ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> M : NN --> ( Clsd ` J ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 32 | 16 | fveqeq2d |  |-  ( k = n -> ( ( ( int ` J ) ` ( M ` k ) ) = (/) <-> ( ( int ` J ) ` ( M ` n ) ) = (/) ) ) | 
						
							| 33 | 32 | cbvralvw |  |-  ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) <-> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) | 
						
							| 34 | 31 33 | sylib |  |-  ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) | 
						
							| 35 | 1 2 29 30 34 | bcthlem5 |  |-  ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> ( ( int ` J ) ` U. ran M ) = (/) ) | 
						
							| 36 | 35 | ex |  |-  ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) -> ( ( int ` J ) ` U. ran M ) = (/) ) ) | 
						
							| 37 | 36 | necon3ad |  |-  ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( ( ( int ` J ) ` U. ran M ) =/= (/) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) ) | 
						
							| 38 | 37 | 3impia |  |-  ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 39 |  | df-ne |  |-  ( ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 40 | 39 | rexbii |  |-  ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 41 |  | rexnal |  |-  ( E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 42 | 40 41 | bitri |  |-  ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) | 
						
							| 43 | 38 42 | sylibr |  |-  ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |