| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  ∧  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ )  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 3 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑋  ↔  𝑦  ∈  𝑋 ) ) | 
						
							| 4 |  | eleq1w | ⊢ ( 𝑟  =  𝑚  →  ( 𝑟  ∈  ℝ+  ↔  𝑚  ∈  ℝ+ ) ) | 
						
							| 5 | 3 4 | bi2anan9 | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ↔  ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  𝑟  =  𝑚 ) | 
						
							| 7 | 6 | breq1d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( 𝑟  <  ( 1  /  𝑘 )  ↔  𝑚  <  ( 1  /  𝑘 ) ) ) | 
						
							| 8 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  =  ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  =  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ) | 
						
							| 10 | 9 | sseq1d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 11 | 7 10 | anbi12d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ↔  ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) ) | 
						
							| 12 | 5 11 | anbi12d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑟  =  𝑚 )  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  ↔  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 13 | 12 | cbvopabv | ⊢ { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) } | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 1  /  𝑘 )  =  ( 1  /  𝑛 ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑚  <  ( 1  /  𝑘 )  ↔  𝑚  <  ( 1  /  𝑛 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑀 ‘ 𝑘 )  =  ( 𝑀 ‘ 𝑛 ) ) | 
						
							| 17 | 16 | difeq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) )  =  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) | 
						
							| 18 | 17 | sseq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ↔  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  ↔  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 21 | 20 | opabbidv | ⊢ ( 𝑘  =  𝑛  →  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) } ) | 
						
							| 22 | 13 21 | eqtrid | ⊢ ( 𝑘  =  𝑛  →  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) } ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑧  =  𝑔  →  ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  =  ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ) | 
						
							| 24 | 23 | difeq1d | ⊢ ( 𝑧  =  𝑔  →  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) )  =  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) | 
						
							| 25 | 24 | sseq2d | ⊢ ( 𝑧  =  𝑔  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( 𝑧  =  𝑔  →  ( ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) )  ↔  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( 𝑧  =  𝑔  →  ( ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) )  ↔  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 28 | 27 | opabbidv | ⊢ ( 𝑧  =  𝑔  →  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) }  =  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) } ) | 
						
							| 29 | 22 28 | cbvmpov | ⊢ ( 𝑘  ∈  ℕ ,  𝑧  ∈  ( 𝑋  ×  ℝ+ )  ↦  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) } )  =  ( 𝑛  ∈  ℕ ,  𝑔  ∈  ( 𝑋  ×  ℝ+ )  ↦  { 〈 𝑦 ,  𝑚 〉  ∣  ( ( 𝑦  ∈  𝑋  ∧  𝑚  ∈  ℝ+ )  ∧  ( 𝑚  <  ( 1  /  𝑛 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 )  ∖  ( 𝑀 ‘ 𝑛 ) ) ) ) } ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  ∧  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ )  →  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  ∧  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ )  →  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 32 | 16 | fveqeq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅  ↔  ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) )  =  ∅ ) ) | 
						
							| 33 | 32 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅  ↔  ∀ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) )  =  ∅ ) | 
						
							| 34 | 31 33 | sylib | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  ∧  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ )  →  ∀ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) )  =  ∅ ) | 
						
							| 35 | 1 2 29 30 34 | bcthlem5 | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  ∧  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  =  ∅ ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  →  ( ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  =  ∅ ) ) | 
						
							| 37 | 36 | necon3ad | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  →  ( ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  ≠  ∅  →  ¬  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 38 | 37 | 3impia | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  ≠  ∅ )  →  ¬  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 39 |  | df-ne | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅  ↔  ¬  ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 40 | 39 | rexbii | ⊢ ( ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅  ↔  ∃ 𝑘  ∈  ℕ ¬  ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 41 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  ℕ ¬  ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅  ↔  ¬  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 42 | 40 41 | bitri | ⊢ ( ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅  ↔  ¬  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 43 | 38 42 | sylibr | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  ≠  ∅ )  →  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅ ) |