| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 3 |  | simprl | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 6 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 | 1 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 9 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝐽  ∈  Top ) | 
						
							| 11 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ∪  ran  𝑀  =  𝑋 ) | 
						
							| 12 |  | toponmax | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝐽 ) | 
						
							| 13 | 8 12 | syl | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 14 | 11 13 | eqeltrd | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ∪  ran  𝑀  ∈  𝐽 ) | 
						
							| 15 |  | isopn3i | ⊢ ( ( 𝐽  ∈  Top  ∧  ∪  ran  𝑀  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  =  ∪  ran  𝑀 ) | 
						
							| 16 | 10 14 15 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  =  ∪  ran  𝑀 ) | 
						
							| 17 | 16 11 | eqtrd | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  =  𝑋 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  𝑋  ≠  ∅ ) | 
						
							| 19 | 17 18 | eqnetrd | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  ≠  ∅ ) | 
						
							| 20 | 1 | bcth | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ( ( int ‘ 𝐽 ) ‘ ∪  ran  𝑀 )  ≠  ∅ )  →  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅ ) | 
						
							| 21 | 2 3 19 20 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝑀  =  𝑋 ) )  →  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  ≠  ∅ ) |