| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 3 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 5 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  𝐽  ∈  Top ) | 
						
							| 7 |  | ffvelcdm | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽  ∧  𝑘  ∈  ℕ )  →  ( 𝑀 ‘ 𝑘 )  ∈  𝐽 ) | 
						
							| 8 |  | elssuni | ⊢ ( ( 𝑀 ‘ 𝑘 )  ∈  𝐽  →  ( 𝑀 ‘ 𝑘 )  ⊆  ∪  𝐽 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽  ∧  𝑘  ∈  ℕ )  →  ( 𝑀 ‘ 𝑘 )  ⊆  ∪  𝐽 ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑀 ‘ 𝑘 )  ⊆  ∪  𝐽 ) | 
						
							| 11 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 12 | 11 | clsval2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑀 ‘ 𝑘 )  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) ) | 
						
							| 13 | 6 10 12 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) ) | 
						
							| 14 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋  ↔  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  =  ∪  𝐽 ) ) | 
						
							| 17 |  | difeq2 | ⊢ ( ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  =  ∪  𝐽  →  ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ( ∪  𝐽  ∖  ∪  𝐽 ) ) | 
						
							| 18 |  | difid | ⊢ ( ∪  𝐽  ∖  ∪  𝐽 )  =  ∅ | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  =  ∪  𝐽  →  ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ∅ ) | 
						
							| 20 |  | difss | ⊢ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) )  ⊆  ∪  𝐽 | 
						
							| 21 | 11 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) )  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ∈  𝐽 ) | 
						
							| 22 | 6 20 21 | sylancl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ∈  𝐽 ) | 
						
							| 23 |  | elssuni | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ∈  𝐽  →  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ⊆  ∪  𝐽 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ⊆  ∪  𝐽 ) | 
						
							| 25 |  | dfss4 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ⊆  ∪  𝐽  ↔  ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 27 |  | id | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ ) | 
						
							| 28 |  | elfvdm | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met ) | 
						
							| 29 | 28 | difexd | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑘 ) ) | 
						
							| 32 | 31 | difeq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  =  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 34 | 32 33 | fvmptg | ⊢ ( ( 𝑘  ∈  ℕ  ∧  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) )  ∈  V )  →  ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 35 | 27 30 34 | syl2anr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 36 | 15 | difeq1d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) )  =  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 37 | 35 36 | eqtrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) | 
						
							| 39 | 26 38 | eqtr4d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 40 | 39 | eqeq1d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( ∪  𝐽  ∖  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) )  =  ∅  ↔  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 41 | 19 40 | imbitrid | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  =  ∪  𝐽  →  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 42 | 16 41 | sylbid | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋  →  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 43 | 42 | ralimdva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∀ 𝑘  ∈  ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋  →  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 44 | 4 43 | sylan | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∀ 𝑘  ∈  ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋  →  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) ) | 
						
							| 45 |  | ffvelcdm | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽  ∧  𝑥  ∈  ℕ )  →  ( 𝑀 ‘ 𝑥 )  ∈  𝐽 ) | 
						
							| 46 | 14 | difeq1d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  =  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑀 ‘ 𝑥 )  ∈  𝐽 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  =  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 48 | 11 | opncld | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑀 ‘ 𝑥 )  ∈  𝐽 )  →  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 49 | 5 48 | sylan | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑀 ‘ 𝑥 )  ∈  𝐽 )  →  ( ∪  𝐽  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 50 | 47 49 | eqeltrd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑀 ‘ 𝑥 )  ∈  𝐽 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 51 | 45 50 | sylan2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑀 : ℕ ⟶ 𝐽  ∧  𝑥  ∈  ℕ ) )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 52 | 51 | anassrs | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∀ 𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 54 | 4 53 | sylan | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∀ 𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 55 | 33 | fmpt | ⊢ ( ∀ 𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 56 | 54 55 | sylib | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 57 |  | nne | ⊢ ( ¬  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅  ↔  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 58 | 57 | ralbii | ⊢ ( ∀ 𝑘  ∈  ℕ ¬  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅  ↔  ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅ ) | 
						
							| 59 |  | ralnex | ⊢ ( ∀ 𝑘  ∈  ℕ ¬  ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅  ↔  ¬  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅ ) | 
						
							| 60 | 58 59 | bitr3i | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅  ↔  ¬  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅ ) | 
						
							| 61 | 1 | bcth | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  ≠  ∅ )  →  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅ ) | 
						
							| 62 | 61 | 3expia | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  →  ( ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  ≠  ∅  →  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅ ) ) | 
						
							| 63 | 62 | necon1bd | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  →  ( ¬  ∃ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  ≠  ∅  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅ ) ) | 
						
							| 64 | 60 63 | biimtrid | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) )  →  ( ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅ ) ) | 
						
							| 65 | 56 64 | syldan | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∀ 𝑘  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) )  =  ∅  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅ ) ) | 
						
							| 66 |  | difeq2 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅  →  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) )  =  ( ∪  𝐽  ∖  ∅ ) ) | 
						
							| 67 | 28 | difexd | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∀ 𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  V ) | 
						
							| 70 | 33 | fnmpt | ⊢ ( ∀ 𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  ∈  V  →  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  Fn  ℕ ) | 
						
							| 71 |  | fniunfv | ⊢ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  Fn  ℕ  →  ∪  𝑘  ∈  ℕ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 72 | 69 70 71 | 3syl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  𝑘  ∈  ℕ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 73 | 35 | iuneq2dv | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  𝑘  ∈  ℕ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ∪  𝑘  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) ) ) | 
						
							| 74 | 32 | cbviunv | ⊢ ∪  𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  =  ∪  𝑘  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑘 ) ) | 
						
							| 75 | 73 74 | eqtr4di | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  𝑘  ∈  ℕ ( ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 )  =  ∪  𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 76 | 72 75 | eqtr3d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  =  ∪  𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 77 |  | iundif2 | ⊢ ∪  𝑥  ∈  ℕ ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) )  =  ( 𝑋  ∖  ∩  𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 78 | 76 77 | eqtrdi | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  =  ( 𝑋  ∖  ∩  𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 79 |  | ffn | ⊢ ( 𝑀 : ℕ ⟶ 𝐽  →  𝑀  Fn  ℕ ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  𝑀  Fn  ℕ ) | 
						
							| 81 |  | fniinfv | ⊢ ( 𝑀  Fn  ℕ  →  ∩  𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 )  =  ∩  ran  𝑀 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 )  =  ∩  ran  𝑀 ) | 
						
							| 83 | 82 | difeq2d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( 𝑋  ∖  ∩  𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝑋  ∖  ∩  ran  𝑀 ) ) | 
						
							| 84 | 14 | adantr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 85 | 84 | difeq1d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( 𝑋  ∖  ∩  ran  𝑀 )  =  ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) | 
						
							| 86 | 78 83 85 | 3eqtrd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) )  =  ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) | 
						
							| 87 | 86 | fveq2d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) ) | 
						
							| 88 | 87 | difeq2d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) )  =  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) ) ) | 
						
							| 89 | 5 | adantr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 90 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 91 |  | biidd | ⊢ ( 𝑘  =  1  →  ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 )  ↔  ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 ) ) ) | 
						
							| 92 |  | fnfvelrn | ⊢ ( ( 𝑀  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑀 ‘ 𝑘 )  ∈  ran  𝑀 ) | 
						
							| 93 | 80 92 | sylan | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑀 ‘ 𝑘 )  ∈  ran  𝑀 ) | 
						
							| 94 |  | intss1 | ⊢ ( ( 𝑀 ‘ 𝑘 )  ∈  ran  𝑀  →  ∩  ran  𝑀  ⊆  ( 𝑀 ‘ 𝑘 ) ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ∩  ran  𝑀  ⊆  ( 𝑀 ‘ 𝑘 ) ) | 
						
							| 96 | 95 10 | sstrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  ∧  𝑘  ∈  ℕ )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 ) | 
						
							| 97 | 96 | expcom | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 ) ) | 
						
							| 98 | 91 97 | vtoclga | ⊢ ( 1  ∈  ℕ  →  ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 ) ) | 
						
							| 99 | 90 98 | ax-mp | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ∩  ran  𝑀  ⊆  ∪  𝐽 ) | 
						
							| 100 | 11 | clsval2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ∩  ran  𝑀  ⊆  ∪  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) ) ) | 
						
							| 101 | 89 99 100 | syl2anc | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  ∩  ran  𝑀 ) ) ) ) | 
						
							| 102 | 88 101 | eqtr4d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 ) ) | 
						
							| 103 |  | dif0 | ⊢ ( ∪  𝐽  ∖  ∅ )  =  ∪  𝐽 | 
						
							| 104 | 103 84 | eqtr4id | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∪  𝐽  ∖  ∅ )  =  𝑋 ) | 
						
							| 105 | 102 104 | eqeq12d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ( ∪  𝐽  ∖  ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) ) )  =  ( ∪  𝐽  ∖  ∅ )  ↔  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  𝑋 ) ) | 
						
							| 106 | 66 105 | imbitrid | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  𝑋 ) ) | 
						
							| 107 | 4 106 | sylan | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ( ( int ‘ 𝐽 ) ‘ ∪  ran  ( 𝑥  ∈  ℕ  ↦  ( 𝑋  ∖  ( 𝑀 ‘ 𝑥 ) ) ) )  =  ∅  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  𝑋 ) ) | 
						
							| 108 | 44 65 107 | 3syld | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽 )  →  ( ∀ 𝑘  ∈  ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  𝑋 ) ) | 
						
							| 109 | 108 | 3impia | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑀 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) )  =  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  ran  𝑀 )  =  𝑋 ) |