Metamath Proof Explorer


Theorem bcthlem5

Description: Lemma for bcth . The proof makes essential use of the Axiom of Dependent Choice axdc4uz , which in the form used here accepts a "selection" function F from each element of K to a nonempty subset of K , and the result function g maps g ( n + 1 ) to an element of F ( n , g ( n ) ) . The trick here is thus in the choice of F and K : we let K be the set of all tagged nonempty open sets (tagged here meaning that we have a point and an open set, in an ordered pair), and F ( k , <. x , z >. ) gives the set of all balls of size less than 1 / k , tagged by their centers, whose closures fit within the given open set z and miss M ( k ) .

Since M ( k ) is closed, z \ M ( k ) is open and also nonempty, since z is nonempty and M ( k ) has empty interior. Then there is some ball contained in it, and hence our function F is valid (it never maps to the empty set). Now starting at a point in the interior of U. ran M , DC gives us the function g all whose elements are constrained by F acting on the previous value. (This is all proven in this lemma.) Now g is a sequence of tagged open balls, forming an inclusion chain (see bcthlem2 ) and whose sizes tend to zero, since they are bounded above by 1 / k . Thus, the centers of these balls form a Cauchy sequence, and converge to a point x (see bcthlem4 ). Since the inclusion chain also ensures the closure of each ball is in the previous ball, the point x must be in all these balls (see bcthlem3 ) and hence misses each M ( k ) , contradicting the fact that x is in the interior of U. ran M (which was the starting point). (Contributed by Mario Carneiro, 6-Jan-2014)

Ref Expression
Hypotheses bcth.2
|- J = ( MetOpen ` D )
bcthlem.4
|- ( ph -> D e. ( CMet ` X ) )
bcthlem.5
|- F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } )
bcthlem.6
|- ( ph -> M : NN --> ( Clsd ` J ) )
bcthlem5.7
|- ( ph -> A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) )
Assertion bcthlem5
|- ( ph -> ( ( int ` J ) ` U. ran M ) = (/) )

Proof

Step Hyp Ref Expression
1 bcth.2
 |-  J = ( MetOpen ` D )
2 bcthlem.4
 |-  ( ph -> D e. ( CMet ` X ) )
3 bcthlem.5
 |-  F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } )
4 bcthlem.6
 |-  ( ph -> M : NN --> ( Clsd ` J ) )
5 bcthlem5.7
 |-  ( ph -> A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) )
6 cmetmet
 |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) )
7 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
8 2 6 7 3syl
 |-  ( ph -> D e. ( *Met ` X ) )
9 1 mopntop
 |-  ( D e. ( *Met ` X ) -> J e. Top )
10 8 9 syl
 |-  ( ph -> J e. Top )
11 4 frnd
 |-  ( ph -> ran M C_ ( Clsd ` J ) )
12 eqid
 |-  U. J = U. J
13 12 cldss2
 |-  ( Clsd ` J ) C_ ~P U. J
14 11 13 sstrdi
 |-  ( ph -> ran M C_ ~P U. J )
15 sspwuni
 |-  ( ran M C_ ~P U. J <-> U. ran M C_ U. J )
16 14 15 sylib
 |-  ( ph -> U. ran M C_ U. J )
17 12 ntropn
 |-  ( ( J e. Top /\ U. ran M C_ U. J ) -> ( ( int ` J ) ` U. ran M ) e. J )
18 10 16 17 syl2anc
 |-  ( ph -> ( ( int ` J ) ` U. ran M ) e. J )
19 8 18 jca
 |-  ( ph -> ( D e. ( *Met ` X ) /\ ( ( int ` J ) ` U. ran M ) e. J ) )
20 1 mopni2
 |-  ( ( D e. ( *Met ` X ) /\ ( ( int ` J ) ` U. ran M ) e. J /\ n e. ( ( int ` J ) ` U. ran M ) ) -> E. m e. RR+ ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
21 20 3expa
 |-  ( ( ( D e. ( *Met ` X ) /\ ( ( int ` J ) ` U. ran M ) e. J ) /\ n e. ( ( int ` J ) ` U. ran M ) ) -> E. m e. RR+ ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
22 19 21 sylan
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) ) -> E. m e. RR+ ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
23 1 mopnuni
 |-  ( D e. ( *Met ` X ) -> X = U. J )
24 8 23 syl
 |-  ( ph -> X = U. J )
25 12 topopn
 |-  ( J e. Top -> U. J e. J )
26 10 25 syl
 |-  ( ph -> U. J e. J )
27 24 26 eqeltrd
 |-  ( ph -> X e. J )
28 reex
 |-  RR e. _V
29 rpssre
 |-  RR+ C_ RR
30 28 29 ssexi
 |-  RR+ e. _V
31 xpexg
 |-  ( ( X e. J /\ RR+ e. _V ) -> ( X X. RR+ ) e. _V )
32 27 30 31 sylancl
 |-  ( ph -> ( X X. RR+ ) e. _V )
33 32 3ad2ant1
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> ( X X. RR+ ) e. _V )
34 12 ntrss3
 |-  ( ( J e. Top /\ U. ran M C_ U. J ) -> ( ( int ` J ) ` U. ran M ) C_ U. J )
35 10 16 34 syl2anc
 |-  ( ph -> ( ( int ` J ) ` U. ran M ) C_ U. J )
36 35 24 sseqtrrd
 |-  ( ph -> ( ( int ` J ) ` U. ran M ) C_ X )
37 36 3ad2ant1
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> ( ( int ` J ) ` U. ran M ) C_ X )
38 simp2
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> n e. ( ( int ` J ) ` U. ran M ) )
39 37 38 sseldd
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> n e. X )
40 simp3
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> m e. RR+ )
41 39 40 opelxpd
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> <. n , m >. e. ( X X. RR+ ) )
42 opabssxp
 |-  { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } C_ ( X X. RR+ )
43 elpw2g
 |-  ( ( X X. RR+ ) e. _V -> ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ~P ( X X. RR+ ) <-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } C_ ( X X. RR+ ) ) )
44 32 43 syl
 |-  ( ph -> ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ~P ( X X. RR+ ) <-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } C_ ( X X. RR+ ) ) )
45 44 adantr
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ~P ( X X. RR+ ) <-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } C_ ( X X. RR+ ) ) )
46 42 45 mpbiri
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ~P ( X X. RR+ ) )
47 simpl
 |-  ( ( k e. NN /\ z e. ( X X. RR+ ) ) -> k e. NN )
48 rspa
 |-  ( ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) /\ k e. NN ) -> ( ( int ` J ) ` ( M ` k ) ) = (/) )
49 5 47 48 syl2an
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( int ` J ) ` ( M ` k ) ) = (/) )
50 ssdif0
 |-  ( ( ( ball ` D ) ` z ) C_ ( M ` k ) <-> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = (/) )
51 1st2nd2
 |-  ( z e. ( X X. RR+ ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. )
52 51 ad2antll
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. )
53 52 fveq2d
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) )
54 df-ov
 |-  ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) = ( ( ball ` D ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. )
55 53 54 eqtr4di
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) = ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) )
56 8 adantr
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> D e. ( *Met ` X ) )
57 xp1st
 |-  ( z e. ( X X. RR+ ) -> ( 1st ` z ) e. X )
58 57 ad2antll
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( 1st ` z ) e. X )
59 xp2nd
 |-  ( z e. ( X X. RR+ ) -> ( 2nd ` z ) e. RR+ )
60 59 ad2antll
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( 2nd ` z ) e. RR+ )
61 bln0
 |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. RR+ ) -> ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) =/= (/) )
62 56 58 60 61 syl3anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) =/= (/) )
63 55 62 eqnetrd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) =/= (/) )
64 10 adantr
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> J e. Top )
65 ffvelrn
 |-  ( ( M : NN --> ( Clsd ` J ) /\ k e. NN ) -> ( M ` k ) e. ( Clsd ` J ) )
66 4 47 65 syl2an
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( M ` k ) e. ( Clsd ` J ) )
67 12 cldss
 |-  ( ( M ` k ) e. ( Clsd ` J ) -> ( M ` k ) C_ U. J )
68 66 67 syl
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( M ` k ) C_ U. J )
69 60 rpxrd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( 2nd ` z ) e. RR* )
70 1 blopn
 |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. RR* ) -> ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) e. J )
71 56 58 69 70 syl3anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( 1st ` z ) ( ball ` D ) ( 2nd ` z ) ) e. J )
72 55 71 eqeltrd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) e. J )
73 12 ssntr
 |-  ( ( ( J e. Top /\ ( M ` k ) C_ U. J ) /\ ( ( ( ball ` D ) ` z ) e. J /\ ( ( ball ` D ) ` z ) C_ ( M ` k ) ) ) -> ( ( ball ` D ) ` z ) C_ ( ( int ` J ) ` ( M ` k ) ) )
74 73 expr
 |-  ( ( ( J e. Top /\ ( M ` k ) C_ U. J ) /\ ( ( ball ` D ) ` z ) e. J ) -> ( ( ( ball ` D ) ` z ) C_ ( M ` k ) -> ( ( ball ` D ) ` z ) C_ ( ( int ` J ) ` ( M ` k ) ) ) )
75 64 68 72 74 syl21anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ball ` D ) ` z ) C_ ( M ` k ) -> ( ( ball ` D ) ` z ) C_ ( ( int ` J ) ` ( M ` k ) ) ) )
76 ssn0
 |-  ( ( ( ( ball ` D ) ` z ) C_ ( ( int ` J ) ` ( M ` k ) ) /\ ( ( ball ` D ) ` z ) =/= (/) ) -> ( ( int ` J ) ` ( M ` k ) ) =/= (/) )
77 76 expcom
 |-  ( ( ( ball ` D ) ` z ) =/= (/) -> ( ( ( ball ` D ) ` z ) C_ ( ( int ` J ) ` ( M ` k ) ) -> ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) )
78 63 75 77 sylsyld
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ball ` D ) ` z ) C_ ( M ` k ) -> ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) )
79 50 78 syl5bir
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = (/) -> ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) )
80 79 necon2d
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( int ` J ) ` ( M ` k ) ) = (/) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) =/= (/) ) )
81 49 80 mpd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) =/= (/) )
82 n0
 |-  ( ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) =/= (/) <-> E. x x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) )
83 8 3ad2ant1
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> D e. ( *Met ` X ) )
84 12 difopn
 |-  ( ( ( ( ball ` D ) ` z ) e. J /\ ( M ` k ) e. ( Clsd ` J ) ) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) e. J )
85 72 66 84 syl2anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) e. J )
86 85 3adant3
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) e. J )
87 simp3
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) )
88 simp2l
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> k e. NN )
89 nnrp
 |-  ( k e. NN -> k e. RR+ )
90 89 rpreccld
 |-  ( k e. NN -> ( 1 / k ) e. RR+ )
91 88 90 syl
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( 1 / k ) e. RR+ )
92 1 mopni3
 |-  ( ( ( D e. ( *Met ` X ) /\ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) e. J /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) /\ ( 1 / k ) e. RR+ ) -> E. n e. RR+ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) )
93 83 86 87 91 92 syl31anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> E. n e. RR+ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) )
94 simp1
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ph )
95 elssuni
 |-  ( ( ( ball ` D ) ` z ) e. J -> ( ( ball ` D ) ` z ) C_ U. J )
96 72 95 syl
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) C_ U. J )
97 24 adantr
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> X = U. J )
98 96 97 sseqtrrd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ball ` D ) ` z ) C_ X )
99 98 ssdifssd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) C_ X )
100 99 sseld
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) -> x e. X ) )
101 100 3impia
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> x e. X )
102 simp2
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( k e. NN /\ z e. ( X X. RR+ ) ) )
103 rphalfcl
 |-  ( n e. RR+ -> ( n / 2 ) e. RR+ )
104 rphalflt
 |-  ( n e. RR+ -> ( n / 2 ) < n )
105 breq1
 |-  ( r = ( n / 2 ) -> ( r < n <-> ( n / 2 ) < n ) )
106 105 rspcev
 |-  ( ( ( n / 2 ) e. RR+ /\ ( n / 2 ) < n ) -> E. r e. RR+ r < n )
107 103 104 106 syl2anc
 |-  ( n e. RR+ -> E. r e. RR+ r < n )
108 107 ad2antlr
 |-  ( ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ n e. RR+ ) /\ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) -> E. r e. RR+ r < n )
109 df-rex
 |-  ( E. r e. RR+ r < n <-> E. r ( r e. RR+ /\ r < n ) )
110 simpr3
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> r e. RR+ )
111 110 rpred
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> r e. RR )
112 simpr1
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> n e. RR+ )
113 112 rpred
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> n e. RR )
114 simplrl
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> k e. NN )
115 114 nnrecred
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( 1 / k ) e. RR )
116 simpr2
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> r < n )
117 lttr
 |-  ( ( r e. RR /\ n e. RR /\ ( 1 / k ) e. RR ) -> ( ( r < n /\ n < ( 1 / k ) ) -> r < ( 1 / k ) ) )
118 117 expdimp
 |-  ( ( ( r e. RR /\ n e. RR /\ ( 1 / k ) e. RR ) /\ r < n ) -> ( n < ( 1 / k ) -> r < ( 1 / k ) ) )
119 111 113 115 116 118 syl31anc
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( n < ( 1 / k ) -> r < ( 1 / k ) ) )
120 8 anim1i
 |-  ( ( ph /\ x e. X ) -> ( D e. ( *Met ` X ) /\ x e. X ) )
121 120 adantr
 |-  ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( D e. ( *Met ` X ) /\ x e. X ) )
122 rpxr
 |-  ( r e. RR+ -> r e. RR* )
123 rpxr
 |-  ( n e. RR+ -> n e. RR* )
124 id
 |-  ( r < n -> r < n )
125 122 123 124 3anim123i
 |-  ( ( r e. RR+ /\ n e. RR+ /\ r < n ) -> ( r e. RR* /\ n e. RR* /\ r < n ) )
126 125 3coml
 |-  ( ( n e. RR+ /\ r < n /\ r e. RR+ ) -> ( r e. RR* /\ n e. RR* /\ r < n ) )
127 1 blsscls
 |-  ( ( ( D e. ( *Met ` X ) /\ x e. X ) /\ ( r e. RR* /\ n e. RR* /\ r < n ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( x ( ball ` D ) n ) )
128 121 126 127 syl2an
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( x ( ball ` D ) n ) )
129 sstr2
 |-  ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( x ( ball ` D ) n ) -> ( ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) )
130 128 129 syl
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) )
131 119 130 anim12d
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) )
132 simpllr
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> x e. X )
133 132 110 jca
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( x e. X /\ r e. RR+ ) )
134 131 133 jctild
 |-  ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ ( n e. RR+ /\ r < n /\ r e. RR+ ) ) -> ( ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
135 134 3exp2
 |-  ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( n e. RR+ -> ( r < n -> ( r e. RR+ -> ( ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) ) ) ) )
136 135 com35
 |-  ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( n e. RR+ -> ( ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( r e. RR+ -> ( r < n -> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) ) ) ) )
137 136 imp5d
 |-  ( ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ n e. RR+ ) /\ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) -> ( ( r e. RR+ /\ r < n ) -> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
138 137 eximdv
 |-  ( ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ n e. RR+ ) /\ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) -> ( E. r ( r e. RR+ /\ r < n ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
139 109 138 syl5bi
 |-  ( ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ n e. RR+ ) /\ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) -> ( E. r e. RR+ r < n -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
140 108 139 mpd
 |-  ( ( ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) /\ n e. RR+ ) /\ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) )
141 140 rexlimdva2
 |-  ( ( ( ph /\ x e. X ) /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( E. n e. RR+ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
142 94 101 102 141 syl21anc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> ( E. n e. RR+ ( n < ( 1 / k ) /\ ( x ( ball ` D ) n ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
143 93 142 mpd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) /\ x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) )
144 143 3expia
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) -> E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
145 144 eximdv
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( E. x x e. ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) -> E. x E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
146 82 145 syl5bi
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> ( ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) =/= (/) -> E. x E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) )
147 81 146 mpd
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> E. x E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) )
148 opabn0
 |-  ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } =/= (/) <-> E. x E. r ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) )
149 147 148 sylibr
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } =/= (/) )
150 eldifsn
 |-  ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ( ~P ( X X. RR+ ) \ { (/) } ) <-> ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ~P ( X X. RR+ ) /\ { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } =/= (/) ) )
151 46 149 150 sylanbrc
 |-  ( ( ph /\ ( k e. NN /\ z e. ( X X. RR+ ) ) ) -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ( ~P ( X X. RR+ ) \ { (/) } ) )
152 151 ralrimivva
 |-  ( ph -> A. k e. NN A. z e. ( X X. RR+ ) { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ( ~P ( X X. RR+ ) \ { (/) } ) )
153 3 fmpo
 |-  ( A. k e. NN A. z e. ( X X. RR+ ) { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } e. ( ~P ( X X. RR+ ) \ { (/) } ) <-> F : ( NN X. ( X X. RR+ ) ) --> ( ~P ( X X. RR+ ) \ { (/) } ) )
154 152 153 sylib
 |-  ( ph -> F : ( NN X. ( X X. RR+ ) ) --> ( ~P ( X X. RR+ ) \ { (/) } ) )
155 154 3ad2ant1
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> F : ( NN X. ( X X. RR+ ) ) --> ( ~P ( X X. RR+ ) \ { (/) } ) )
156 1z
 |-  1 e. ZZ
157 nnuz
 |-  NN = ( ZZ>= ` 1 )
158 156 157 axdc4uz
 |-  ( ( ( X X. RR+ ) e. _V /\ <. n , m >. e. ( X X. RR+ ) /\ F : ( NN X. ( X X. RR+ ) ) --> ( ~P ( X X. RR+ ) \ { (/) } ) ) -> E. g ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) )
159 33 41 155 158 syl3anc
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> E. g ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) )
160 simpl1
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> ph )
161 160 2 syl
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> D e. ( CMet ` X ) )
162 160 4 syl
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> M : NN --> ( Clsd ` J ) )
163 simpl3
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> m e. RR+ )
164 39 adantr
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> n e. X )
165 simpr1
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> g : NN --> ( X X. RR+ ) )
166 simpr2
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> ( g ` 1 ) = <. n , m >. )
167 simpr3
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) )
168 fvoveq1
 |-  ( n = k -> ( g ` ( n + 1 ) ) = ( g ` ( k + 1 ) ) )
169 id
 |-  ( n = k -> n = k )
170 fveq2
 |-  ( n = k -> ( g ` n ) = ( g ` k ) )
171 169 170 oveq12d
 |-  ( n = k -> ( n F ( g ` n ) ) = ( k F ( g ` k ) ) )
172 168 171 eleq12d
 |-  ( n = k -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) )
173 172 cbvralvw
 |-  ( A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) )
174 167 173 sylib
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) )
175 1 161 3 162 163 164 165 166 174 bcthlem4
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) /\ ( g : NN --> ( X X. RR+ ) /\ ( g ` 1 ) = <. n , m >. /\ A. n e. NN ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) -> ( ( n ( ball ` D ) m ) \ U. ran M ) =/= (/) )
176 159 175 exlimddv
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> ( ( n ( ball ` D ) m ) \ U. ran M ) =/= (/) )
177 12 ntrss2
 |-  ( ( J e. Top /\ U. ran M C_ U. J ) -> ( ( int ` J ) ` U. ran M ) C_ U. ran M )
178 10 16 177 syl2anc
 |-  ( ph -> ( ( int ` J ) ` U. ran M ) C_ U. ran M )
179 sstr2
 |-  ( ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) -> ( ( ( int ` J ) ` U. ran M ) C_ U. ran M -> ( n ( ball ` D ) m ) C_ U. ran M ) )
180 178 179 syl5com
 |-  ( ph -> ( ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) -> ( n ( ball ` D ) m ) C_ U. ran M ) )
181 ssdif0
 |-  ( ( n ( ball ` D ) m ) C_ U. ran M <-> ( ( n ( ball ` D ) m ) \ U. ran M ) = (/) )
182 180 181 syl6ib
 |-  ( ph -> ( ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) -> ( ( n ( ball ` D ) m ) \ U. ran M ) = (/) ) )
183 182 necon3ad
 |-  ( ph -> ( ( ( n ( ball ` D ) m ) \ U. ran M ) =/= (/) -> -. ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) ) )
184 183 3ad2ant1
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> ( ( ( n ( ball ` D ) m ) \ U. ran M ) =/= (/) -> -. ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) ) )
185 176 184 mpd
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) /\ m e. RR+ ) -> -. ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
186 185 3expa
 |-  ( ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) ) /\ m e. RR+ ) -> -. ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
187 186 nrexdv
 |-  ( ( ph /\ n e. ( ( int ` J ) ` U. ran M ) ) -> -. E. m e. RR+ ( n ( ball ` D ) m ) C_ ( ( int ` J ) ` U. ran M ) )
188 22 187 pm2.65da
 |-  ( ph -> -. n e. ( ( int ` J ) ` U. ran M ) )
189 188 eq0rdv
 |-  ( ph -> ( ( int ` J ) ` U. ran M ) = (/) )