| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | bcthlem.4 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | bcthlem.5 |  |-  F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) | 
						
							| 4 |  | bcthlem.6 |  |-  ( ph -> M : NN --> ( Clsd ` J ) ) | 
						
							| 5 |  | bcthlem.7 |  |-  ( ph -> R e. RR+ ) | 
						
							| 6 |  | bcthlem.8 |  |-  ( ph -> C e. X ) | 
						
							| 7 |  | bcthlem.9 |  |-  ( ph -> g : NN --> ( X X. RR+ ) ) | 
						
							| 8 |  | bcthlem.10 |  |-  ( ph -> ( g ` 1 ) = <. C , R >. ) | 
						
							| 9 |  | bcthlem.11 |  |-  ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( k = n -> ( g ` ( k + 1 ) ) = ( g ` ( n + 1 ) ) ) | 
						
							| 11 |  | id |  |-  ( k = n -> k = n ) | 
						
							| 12 |  | fveq2 |  |-  ( k = n -> ( g ` k ) = ( g ` n ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( k = n -> ( k F ( g ` k ) ) = ( n F ( g ` n ) ) ) | 
						
							| 14 | 10 13 | eleq12d |  |-  ( k = n -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) | 
						
							| 15 | 14 | rspccva |  |-  ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ n e. NN ) -> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) | 
						
							| 16 | 9 15 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) | 
						
							| 17 | 7 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( g ` n ) e. ( X X. RR+ ) ) | 
						
							| 18 | 1 2 3 | bcthlem1 |  |-  ( ( ph /\ ( n e. NN /\ ( g ` n ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) | 
						
							| 19 | 18 | expr |  |-  ( ( ph /\ n e. NN ) -> ( ( g ` n ) e. ( X X. RR+ ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) ) | 
						
							| 20 | 17 19 | mpd |  |-  ( ( ph /\ n e. NN ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) | 
						
							| 21 | 16 20 | mpbid |  |-  ( ( ph /\ n e. NN ) -> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) | 
						
							| 22 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 23 | 2 22 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 24 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 26 | 1 | mopntop |  |-  ( D e. ( *Met ` X ) -> J e. Top ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 28 |  | xp1st |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 1st ` ( g ` ( n + 1 ) ) ) e. X ) | 
						
							| 29 |  | xp2nd |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR+ ) | 
						
							| 30 | 29 | rpxrd |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) | 
						
							| 31 | 28 30 | jca |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) ) | 
						
							| 32 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) | 
						
							| 33 | 32 | 3expb |  |-  ( ( D e. ( *Met ` X ) /\ ( ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) | 
						
							| 34 | 25 31 33 | syl2an |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) | 
						
							| 35 |  | df-ov |  |-  ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) | 
						
							| 36 |  | 1st2nd2 |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( g ` ( n + 1 ) ) = <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) ) | 
						
							| 38 | 35 37 | eqtr4id |  |-  ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) | 
						
							| 40 | 1 | mopnuni |  |-  ( D e. ( *Met ` X ) -> X = U. J ) | 
						
							| 41 | 25 40 | syl |  |-  ( ph -> X = U. J ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> X = U. J ) | 
						
							| 43 | 34 39 42 | 3sstr3d |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ U. J ) | 
						
							| 44 |  | eqid |  |-  U. J = U. J | 
						
							| 45 | 44 | sscls |  |-  ( ( J e. Top /\ ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ U. J ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) ) | 
						
							| 46 | 27 43 45 | syl2an2r |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) ) | 
						
							| 47 |  | difss2 |  |-  ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) | 
						
							| 48 |  | sstr2 |  |-  ( ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) | 
						
							| 49 | 46 47 48 | syl2im |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) | 
						
							| 50 | 49 | a1d |  |-  ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) ) | 
						
							| 51 | 50 | ex |  |-  ( ph -> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) ) ) | 
						
							| 52 | 51 | 3impd |  |-  ( ph -> ( ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) | 
						
							| 54 | 21 53 | mpd |  |-  ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |